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Abstract—Attention-based encoder-decoder approaches have
shown promising results in scene text recognition. In the liter-
ature, models with different encoders, decoders and attention
mechanisms have been proposed and compared on isolated
word recognition tasks, where the models are trained on either
synthetic word images or a small set of real-world images. In
this paper, we investigate different components of the attention
based framework and compare its performance with a CNN-
DBLSTM-CTC based approach on large-scale real-world scene
text sentence recognition tasks. We train character models by
using more than 1.6M real-world text lines and compare their
performance on test sets collected from a variety of real-
world scenarios. Our results show that (1) attention on a two-
dimensional feature map can yield better performance than one-
dimensional one and an RNN based decoder performs better
than CNN based one; (2) attention-based approaches can achieve
higher recognition accuracy than CNN-DBLSTM-CTC based
approaches on isolated word recognition tasks, but perform worse
on sentence recognition tasks; (3) it is more effective and efficient
for CNN-DBLSTM-CTC based approaches to leverage an explicit
language model to boost recognition accuracy.

Keywords-Scene Text Recognition; Encoder-Decoder; Atten-
tion; Connectionist Temporal Classification

I. INTRODUCTION

Recently, an attention-based encoder-decoder framework as

illustrated in Fig. 1 has been applied to Scene Text Recognition

(STR) with promising results on several benchmark tasks (e.g.,

[1]–[4]). It encodes an input image as a one-dimensional

feature sequence or a two-dimensional feature map, attends

on a specific part at each time-step, and decodes an output

label sequence in an auto-regressive way. In the literature, dif-

ferent encoders, decoders and attention mechanisms have been

investigated. However, most experiments and comparisons are

conducted on isolated word recognition tasks, where models

are trained with either synthetic word images (e.g., [1]–[6]) or

a small set of real-world images (e.g., [7], [8]). Some issues

critical to sentence recognition such as

• word segmentation errors,

• accumulated prediction errors with an increased sentence

length,
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h1ĥ1
^ h2ĥ2
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Fig. 1. Illustration of an attention-based encoder-decoder framework. The
BLSTM layer plotted in the grey dashed box in encoder block is optional.
The GRU module in decoder block is a dual GRU structure as in [11].

• the feasibility of leveraging an explicit language model

in decoding to improve recognition accuracy,

are avoided for isolated word recognition. Consequently, ob-

servations made and conclusions drawn on isolated word

recognition tasks may not be applicable to real-world sentence

recognition tasks.

In this paper, we re-investigate the attention-based encoder-

decoder framework and compare it with a CNN-DBLSTM-

CTC based (e.g., [9], [10]) end-to-end sequence learning and

labeling approach on large-scale real-world scene text sentence

recognition tasks, and make the following observations:

• Compared with the CNN-DBLSTM-CTC based ap-

proach, the attention-based approach can achieve higher

recognition accuracy on isolated word recognition tasks,

but performs worse on sentence recognition tasks;

• It is more effective and efficient for CNN-DBLSTM-CTC

based approach to leverage an explicit language model to

boost recognition accuracy.

The rest of paper is organized as follows. In Section II,

we describe the attention-based encoder-decoder approaches

under investigation. In Section III and Section IV, we present

experimental setups and results respectively. Finally, we sum-

marize our findings and discuss future works in Section V.
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II. ATTENTION-BASED ENCODER-DECODER APPROACH

A general architecture of an attention-based encoder-

decoder approach is shown in Fig. 1. It consists of three com-

ponents: encoder, attention mechanism and decoder. Different

models can be used in each of the above components.

A. Encoder

In the literature, different neural network models have been

proposed to encode an input text-line image. Most of them

can be grouped into two categories in terms of the shape of a

learned feature map, i.e., a one-dimensional feature sequence

or a two-dimensional feature map. Similar to that in machine

translation, the input text-line image can be encoded as a

one-dimensional feature sequence, where a spatial position

in the same column shares the same attention weights, by

different neural network models, e.g., a recursive Convolution

Neural Network (CNN) followed by fully connection layers

[1], a Convolution Recurrent Neural Network (CRNN) [2]

or a self-attention network following a CNN model [12]. On

the other hand, the input image can be encoded as a two-

dimensional feature map to keep vertical spatial information.

The attention weight corresponding to each spatial position

is calculated independently. These two-dimensional attention-

based approaches are widely used in irregular text recognition

[4] and mathematical expression recognition [11].

In this paper, we mainly investigate whether a two-

dimensional feature map is essential in regular scene text

sentence recognition. Attention on a 2D feature map can

provide additional vertical visual cues to improve the dis-

crimination of ambiguous characters or symbol pairs. We first

evaluate the performance of several popular CNN topologies,

i.e., DenseNet99 [13], ShuffleNet50 [14] and ResNet50 [15],

then compare the best one with a CRNN model by adding a

bidirectional LSTM layer on top of it.

B. Attention Mechanism

Besides a conventional soft-attention mechanism [16], some

advanced attention models have been proposed in scene text

recognition. Cheng et al. [3] propose a focusing attention

network to obtain more accurate alignments between an input

image and an output label sequence with an extra dataset

labeled on pixel level. Li et al. [4] improve the conventional

soft-attention by taking an eight-neighborhood context into

account when calculating an attention weight for each position.

Zhang et al. [11] introduce and expand a coverage model

proposed originally in [17] into an attention mechanism by

considering the accumulated attention weight of each position

to alleviate a miss- or over- parsing problem [18], [19]. Then,

Zhang et al. apply this framework to handwritten mathematical

expression recognition [11] and handwritten Chinese character

recognition tasks [20], which achieves the state-of-the-art

results.

In this paper, we compare the performance of a plain soft-

attention mechanism with the one configured with a coverage

model as adopted in [11] and investigate the effect of kernel

size in the coverage model.

TABLE I
OVERVIEW OF DATASETS

Train Val Test Total

G 1,019,367 54,713 12,009 1,086,089

S 323,258 44,774 36,684 404,716

Syn. 300,000 37,000 - 337,000

11Seg - - 19,099 19,099

IC13 - - 1,094 1,094

C. Decoder

For the decoder module, recurrent neural network is

the most widely used model. Motivated by a completely

convolution-based decoder in machine translation [21], Fang

et al. [6] propose a deep one-dimensional CNN-based decoder

consisting of a dot-product attention module to capture visual

cues and a character-level language module to model linguistic

rules. Their experimental results show that the CNN-based

decoder can achieve a comparable or slightly better accuracy

than RNN-based one on several isolated word recognition

tasks.

In this paper, we re-implement the CNN-based decoder

proposed in [6] and compare it with a GRU-RNN based

decoder on sentence recognition tasks. Similar to the decoder

used in [11], a dual GRU structure is adopted here.

D. Decoding Strategy

Due to the auto-regressive decoding mechanism in an

attention-based system, it is difficult to parallelize decoding

process across different time-steps. Beam search is widely

used to obtain a decoded label sequence. To further boost

recognition accuracy, some heuristic approaches have been

proposed to leverage an explicit language model, e.g., N-

best rescoring, shallow fusion [22], deep fusion [22] and cold

fusion [23]. Considering the complexity of implementation,

the N-best rescoring approach is adopted in this paper when

decoding with a language model.

III. EXPERIMENTAL SETUP

A. Datasets

Text line images used in this experiment are cropped from

Open Image dataset (G for short) [24], street view images

(S for short) for internal usage and synthetic text lines. The

number of text lines corresponding to the training, validation

and testing sets are shown in Table I. There are more than

1.6M text lines in total in the training set, which contains

both isolated words and sentences. The distributions of the

number of words and characters contained in each text line

are shown in Fig. 2(a) and 2(b), respectively. It shows that a

wide range of word length is covered, rather than single word

only. Our character set consists of 26 uppercase letters, 26

lowercase letters, 10 digits, 32 punctuation and symbols, and

1 space label.

To have a solid comparison of different STR systems,

a variety of testing sets are collected, including randomly
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(a) # of words (b) # of characters

Fig. 2. Distributions of the number of words and characters in text lines.

sampled in-domain G and S testing sets and two out-of-

domain datasets. One is an widely used academic testing set,

IC13 [25] and another is collected from 11 real-world scene

text recognition scenarios (11Seg for short), i.e., book cover,

business card, document, Gif, invoice, menu, poster, product

label, receipt, slide and street view. The numbers of lines are

shown in the fourth column in Table I.

B. Training Details

The attention-based models are implemented based on Py-

Torch platform and trained with 32 NVIDIA Tesla P100 GPUs

using a distributed synchronous gradient descent strategy [26],

where the local optimizer is ADAM [27] with 0.1 times

learning rate decay. The gradients of trainable parameters and

the mean/variance of batch normalization (BN) are averaged

over all GPUs for each iteration. Seed models with a small

learning rate are trained with 10% training data on a single

GPU for initialization.

Different from a conventional evaluation metric on isolated

word recognition tasks [1], [3]–[6], [28], Word Error Rate

(WER) and Character Error Rate (CER) are adopted on

sentence recognition tasks. All the case-sensitive characters,

punctuation and symbols are considered. Each word-level

hypothesis is obtained by splitting a character sequence hy-

pothesis with the assistance of the space label.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Encoder

Firstly, we explore different backbones used in the en-

coder module, i.e., DenseNet99 [13], ShuffleNet50 [14] and

ResNet50 [15]. The same attention mechanism and decoder

topology are applied. The decoder contains 2 GRU layers,

each with 256 hidden nodes and the convolution kernel size

in coverage model is 11×11. The numbers of parameters and

beam search (N=10) decoding results are shown in Table

II. WER/CER are shown in each cell. Results show that,

compared with ResNet50 and ShuffleNet50, DenseNet99 can

achieve comparable or slightly better performance on different

testing sets with a much smaller model size.

Secondly, we investigate whether a two-dimensional feature

map is better than a one-dimensional one for attention in

regular sentence recognition. Based upon DenseNet99, we

TABLE II
WER/CER (IN %) OF DIFFERENT ENCODERS

Backbone #Params G S 11Seg IC13

ResNet50 26.7M 3.7/0.7 3.4/0.7 3.5/1.3 12.5/3.9

ShuffleNet50 7.40M 3.9/0.9 3.5/0.8 3.8/1.5 12.5/4.1

DenseNet99 5.46M 3.7/0.7 3.4/0.7 3.6/1.3 11.2/3.6

+BLSTM 11.3M 3.9/0.7 3.5/0.7 3.9/1.4 11.8/3.7

TABLE III
WER/CER (IN %) OF DIFFERENT COVERAGE MODEL

Kernel Size #Params G S 11Seg IC13

w/o 5.13M 4.0/1.0 3.8/0.9 3.8/1.6 13.8/3.7

3x3 5.40M 4.0/0.9 3.6/0.8 4.1/1.6 14.6/4.0

5x5 5.41M 3.9/0.7 3.5/0.7 3.5/1.3 11.8/3.7

7x7 5.43M 3.8/0.7 3.5/0.7 3.5/1.3 13.6/3.5

9x9 5.44M 3.8/0.7 3.5/0.8 3.7/1.4 12.6/3.7

11x11 5.46M 3.7/0.7 3.4/0.7 3.6/1.3 11.2/3.6

add an extra BLSTM layer to further compress the two-

dimensional feature maps to one-dimensional feature se-

quences. The BLSTM layer contains 128 hidden nodes in each

direction. The results are shown in the last row in Table II.

It shows that the encoder with a BLSTM layer yields worse

result than the purely CNN one, though with more parameters.

We conjecture that this is because the vertical spatial cues

are important in recognizing some superscripts, subscripts and

punctuation symbols. In following experiments, DensetNet99

is chosen as the default model in encoder.

B. Attention Mechanism

We investigate the effect of a coverage model configured

in the conventional soft-attention mechanism in scene text

sentence recognition. As described in Section II, the coverage

model is used to alleviate the miss- or over-parsing problem by

recording which position in the feature map have been visited.

The beam search results corresponding to the conventional

soft-attention module and coverage models of different kernel

sizes are shown in Table III. By enlarging the kernel size

from 3×3 to 11×11 by stride 2, better performance can be

achieved. On the other hand, compared with the plain soft-

attention module, as shown in the second row in Table III,

the attention model with a coverage model of 11×11 kernel

size can achieve much better results. The attention mechanism

with a coverage model of 11×11 kernel size is finally adopted

in following experiments.

C. Decoder

Besides the GRU-RNN based decoder, we re-implement a

CNN-based decoder proposed in [6], which contains 6 blocks

with 1×3 convolutional kernel size and 512 channels. To make

a fair comparison, the same Desnet99 based encoder is used.

The results are shown in Table IV. It shows that (1) the RNN-

based decoder can achieve a much lower WER consistently

on different test sets than the CNN-based one; (2) The gap of

CER is smaller on isolated word set (IC13) and short sentence
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TABLE IV
WER/CER (IN %) OF DIFFERENT DECODERS

Decoder #Params G S 11Seg IC13

RNN 5.46M 3.7/0.7 3.4/0.7 3.6/1.3 11.2/3.6

CNN [6] 17.1M 4.1/1.0 3.7/0.8 4.0/1.8 12.3/3.7

TABLE V
WER/CER (IN %) OF ATTENTION AND CTC-BASED MODELS

G S 11Seg IC13

Attention 3.7/0.7 3.4/0.7 3.6/1.3 11.2/3.6

+LM 3.4/0.6 3.0/0.6 3.3/1.2 9.7/3.3

CTC 3.4/0.7 3.4/0.7 3.2/1.2 12.7/4.0

+LM 2.9/0.5 2.7/0.6 2.7/1.1 9.4/3.1

set (S), but larger on long sentence sets (G and 11Seg). It

indicates that the performance of CNN-based decoder will

degrade if the length of decoding sequence is longer than a

certain threshold. The RNN-based decoder is more suitable

for scene text sentence recognition than the CNN-based one.

D. Comparison Between Attention and CTC-based Models

In this subsection, we compare the best attention-based

encoder-decoder system (i.e., DenseNet99 based encoder, soft-

attention with a coverage model of 11×11 convolution kernel

size and RNN-based decoder) with one of the state-of-the-

art CNN-DBLSTM-CTC based systems [29]. The CTC-based

system contains a modified 10-layer VGG-Net followed by 2

BLSTM layers with 128 nodes for each direction, which is

the same as that used in [29].

To boost recognition accuracy, we leverage an explicit

language model in the decoding stage. In CTC-based system,

a hybrid word and sub-word level bi-gram language model is

used. The language model, a lexicon of 131k words/subwords

and the Hidden Markov Model (HMM) topology are inte-

grated and represented as a Weighted Finite State Transducer

(WFST). The building process is similar to that described in

[30]. In attention-based system, the N-best rescoring approach

is adopted to leverage the language model score. The N-best

hypotheses are re-ranked by the interpolated character model

score and its language model score obtained from a character

level, LSTM-RNN language model, which contains 2 LSTM

layers with 1024 nodes for each layer.

The recognition results with or without leveraging an ex-

plicit language model are shown in Table V. Without using

a language model, the attention-based system can achieve

comparable performance as the CTC-based system, i.e., better

on IC13 test set, the same on S test set, but slightly worse

on G and 11Seg test sets. However, it performs worse than

CTC-based system consistently on different test sets when

leveraging an explicit language model.

To verify the effectiveness of the generated N-best hypothe-

ses, we calculate Oracle Error Rates (OERs) on top-N beam

search results, denoted as top3, top5 and top10. The OERs

are obtained by selecting the hypothesis from the top-N beam

TABLE VI
ORACLE WER/CER (IN %) IN ATTENTION-BASED SYSTEM

G S 11Seg IC13

Beam search 3.7/0.7 3.4/0.7 3.6/1.3 11.2/3.6

Oracle in top3 1.7/0.4 1.4/0.4 2.5/1.1 7.3/2.5

Oracle in top5 1.4/0.3 1.0/0.2 2.2/1.0 5.9/2.1

Oracle in top10 1.1/0.2 0.7/0.1 1.9/0.9 5.3/1.8

TABLE VII
COMPARISON OF ATTENTION AND CTC ON SINGLE WORD IMAGES

G-1 S-1 11Seg-1 IC13

WER
Attention 4.8 3.0 4.2 11.2

CTC 3.9 3.0 3.5 12.7

SER*
Attention 5.0 3.4 6.9 10.0

CTC 4.8 3.5 7.0 12.1

search results which yields the lowest CER compared with the

ground truth. Obviously, a larger N will yield a smaller oracle

WER/CER. As shown in Table VI, the oracle results are much

better than the best CTC and attention-based decoding results.

In the future, we will investigate smarter decoding strategies

or more powerful language models to better utilize the beam

search N-best results to achieve better final results.

E. Experiments on Isolated Word Recognition Tasks

Besides sentence recognition tasks, we further conduct a

comparative study on isolated word datasets. The results are

shown in Table VII. G-1, S-1 and 11Seg-1 are single word

image sets contained in G, S and 11Seg, respectively. SER*

stands for space-free sentence error rate, where the space in

each hypothesis is removed with the assumption that only one

single word is contained in each image. Therefore, 1-SER*

equals to the accuracy measured in none lexicon mode as used

in [1]–[6], [28].

The attention-based system achieves an overall lower or

comparable SER* than the CTC-based system, yet yields

a higher WER on G-1 and 11Seg-1 sets. This observation

indicates that the attention-based system yields inferior per-

formance in recognizing space than other characters. It tends

to emit a space label when the space between two adjacent

characters is slightly larger than normal inter-character space,

which is known as segmentation errors. We conjecture that

this is resulted from the decoding mechanism of the attention

model, which relies on the last predicted label and a local

context vector to predict the next character label. Therefore,

it is unable to utilize a global context properly in decoding

stage. However, in the CTC-based system, the whole image

features are leveraged by BLSTM layers when predicting

labels for each frame. Consistent with observations in the

literature [4], [31], the attention-based approach can achieve

better accuracy than CTC-based approach on isolated word

recognition scenarios. But as shown in our experiments, it

performs worse when taking the segmentation errors into

account in an evaluation metric.
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(a) Space insertion

(b) Alignment failure

(c) Character decompose

(d) Beginning part error

Fig. 3. Attention visualization of typical errors.

F. Error Analysis of Attention-based Encoder-Decoder System

By analyzing the decoding results and visualized attention

weights, we find that there are mainly four typical error

patterns in the attention-based systems, which are described

below in the order of decreasing severity:

• Word or character segmentation errors: As illustrated

in Fig. 3(a), if the space between two adjacent charac-

ters (e.g., between ‘T’ and ‘I’ in ‘LANGOSTINOS’) is

slightly larger than a normal inter-character space, the

attention model tends to insert an extra space label within

the word. On the other hand, it will sometimes decom-

poses a wider character into two (e.g, ‘u’ is decoded as

‘ti’), as illustrated in Fig. 3(c). These two kinds of errors

might be resulted from the prediction mechanism of the

attention model which is unable to utilize the full context

or neighborhood context effectively when predicting the

next character.

• Beginning part errors: As illustrated in Fig. 3(d), the

attention model is unable to predict the beginning char-

acter reliably, especially when the beginning character is

ambiguous (e.g., ‘t’ is decoded as ‘+’). This is because

there is little context to be leveraged when predicting the

first character since the decoding process is performed

from left to right in an auto-regressive way.

• Alignment errors: this is a typical and well-known

issue of the attention model in NLP field [18], [19].

The attention model may sometimes miss a segment or

decode the same segment many times. As illustrated in

the second and fourth rows in Fig. 3(b), the attention

model is confused and unable to find the next character

correctly when the same character ‘o’ is observed at more

than two positions. The position embedding [32] or the

coverage model can alleviate this problem to a certain

extent.

V. SUMMARY AND FUTURE WORK

We have conducted a comparative study of different en-

coder, attention and decoder modules in an attention-based

encoder-decoder approach and compared its performance with

a CNN-DBLSTM-CTC based system on large-scale real-

world scene text sentence recognition tasks. Our experimental

results show that the attention-based approach can achieve a

better result than the CTC-based approach on isolated word

recognition tasks when decoding with a greedy search strategy,

which is largely consistent with the observations made in

the literature. However, the attention-based approach performs

worse than the CTC-based approach on scene text sentence

recognition scenarios and/or when an explicit language model

is used in decoding.

We further analyze and illustrate some common error pat-

terns of the attention-based systems. Among these errors, the

issue of segmentation errors is the most serious one. As future

works, we will try to alleviate this problem from three aspects:

1) Learning a seq2seq module to map a character sequence to

a word sequence; 2) Decoding with a smarter search strategy

or a more powerful language model; 3) Making better use of

context information in attention mechanism.
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