Skip to content

Commit

Permalink
powerpc/cell/axon-msi: Retry on missing interrupt
Browse files Browse the repository at this point in the history
The MSI capture logic for the axon bridge can sometimes
lose interrupts in case of high DMA and interrupt load,
when it signals an MSI interrupt to the MPIC interrupt
controller while we are already handling another MSI.

Each MSI vector gets written into a FIFO buffer in main
memory using DMA, and that DMA access is normally flushed
by the actual interrupt packet on the IOIF.  An MMIO
register in the MSIC holds the position of the last
entry in the FIFO buffer that was written.  However,
reading that position does not flush the DMA, so that
we can observe stale data in the buffer.

In a stress test, we have observed the DMA to arrive
up to 14 microseconds after reading the register.

This patch works around this problem by retrying the
access to the FIFO buffer.

We can reliably detect the conditioning by writing
an invalid MSI vector into the FIFO buffer after
reading from it, assuming that all MSIs we get
are valid.  After detecting an invalid MSI vector,
we udelay(1) in the interrupt cascade for up to
100 times before giving up.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
  • Loading branch information
arndb authored and paulusmack committed Nov 30, 2008
1 parent 4a61866 commit d015fe9
Showing 1 changed file with 31 additions and 5 deletions.
36 changes: 31 additions & 5 deletions arch/powerpc/platforms/cell/axon_msi.c
Original file line number Diff line number Diff line change
Expand Up @@ -95,28 +95,53 @@ static void axon_msi_cascade(unsigned int irq, struct irq_desc *desc)
struct axon_msic *msic = get_irq_data(irq);
u32 write_offset, msi;
int idx;
int retry = 0;

write_offset = dcr_read(msic->dcr_host, MSIC_WRITE_OFFSET_REG);
pr_debug("axon_msi: original write_offset 0x%x\n", write_offset);

/* write_offset doesn't wrap properly, so we have to mask it */
write_offset &= MSIC_FIFO_SIZE_MASK;

while (msic->read_offset != write_offset) {
while (msic->read_offset != write_offset && retry < 100) {
idx = msic->read_offset / sizeof(__le32);
msi = le32_to_cpu(msic->fifo_virt[idx]);
msi &= 0xFFFF;

pr_debug("axon_msi: woff %x roff %x msi %x\n",
write_offset, msic->read_offset, msi);

if (msi < NR_IRQS && irq_map[msi].host == msic->irq_host) {
generic_handle_irq(msi);
msic->fifo_virt[idx] = cpu_to_le32(0xffffffff);
} else {
/*
* Reading the MSIC_WRITE_OFFSET_REG does not
* reliably flush the outstanding DMA to the
* FIFO buffer. Here we were reading stale
* data, so we need to retry.
*/
udelay(1);
retry++;
pr_debug("axon_msi: invalid irq 0x%x!\n", msi);
continue;
}

if (retry) {
pr_debug("axon_msi: late irq 0x%x, retry %d\n",
msi, retry);
retry = 0;
}

msic->read_offset += MSIC_FIFO_ENTRY_SIZE;
msic->read_offset &= MSIC_FIFO_SIZE_MASK;
}

if (msi < NR_IRQS && irq_map[msi].host == msic->irq_host)
generic_handle_irq(msi);
else
pr_debug("axon_msi: invalid irq 0x%x!\n", msi);
if (retry) {
printk(KERN_WARNING "axon_msi: irq timed out\n");

msic->read_offset += MSIC_FIFO_ENTRY_SIZE;
msic->read_offset &= MSIC_FIFO_SIZE_MASK;
}

desc->chip->eoi(irq);
Expand Down Expand Up @@ -364,6 +389,7 @@ static int axon_msi_probe(struct of_device *device,
dn->full_name);
goto out_free_fifo;
}
memset(msic->fifo_virt, 0xff, MSIC_FIFO_SIZE_BYTES);

msic->irq_host = irq_alloc_host(dn, IRQ_HOST_MAP_NOMAP,
NR_IRQS, &msic_host_ops, 0);
Expand Down

0 comments on commit d015fe9

Please sign in to comment.