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on an automatic detector. In most applications this is more easily said 
than done and often we have to work from the time-series alone. This 
would be fine if vehicles don’t pass because then (barring detector 
errors) as soon as one of the trajectories is identified the rest follow. It 
would also be fine if the observation stations were to be so closely 
spaced that only small vehicular speed changes over the detector 
spacing could arise because then it would also be obvious which vehicles 
are which. 

Another form of data (used in connection with freeway studies) arises 
from time-lapse aerial photographs. Because each photograph is taken 
at a specific time, t, it is associated with a ‘vertical’ line on the 
time-space diagram, as shown in Fig. 1.3b. One can then display by 
means of dots on the line the location of the ‘noses’ (or ‘tails’) of every 
vehicle at each sampled instant. The photographs automatically display 
vehicle ‘signatures’, thanks to their pictorial detail, and this makes it 
possible (although very tedious and impractical) to connect the ap- 
propriate points with smooth lines to develop the vehicle trajectories. 
This method of construction, however, illustrates that the time-space 
diagram is a complete summary of the 1-dimensional progress of our 
vehicles. We note that Fig. 1.3b could have been obtained by actually 
laying the strips of film side by side and that if these were viewed across 
a vertical slit that was moved from left to right at an appropriate rate, 
one would be replaying a movie of the system’s evolution! In other 
words the (t, x) diagram gives a complete description of the history of 
our vehicles’ longitudinal motion. 

Besides displaying field data in a complete way, the recipes for 
constructing Fig. 1.3a and b are also important because they indicate a 
reverse way in which the (t, x) diagram can be ‘read’. In particular note 
that a horizontal line through the diagram (e.g. at position xj in Fig. 
1.3a) identifies the times at which successive vehicles pass a stationary 
observer, and that a vertical line at a given abscissa (e.g. time t, in Fig. 
1.3b) identifies the vehicle positions at the given time. The truth of this 
statement does not depend on how the (t, x) diagram was developed. 
The times between consecutive vehicle observations at a fixed location, 
h i ,  are usually called headways, and the distance separations between 
consecutive vehicles at a given instant, s j ,  spacings. 

1.2.2 Definitions of trafJic stream features 

The number of vehicles observed by a stationary observer during a given 
time interval, m, divided by the length of the time interval, T, is the 
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Figure 1.3 Three ways of gathering (t, x )  trajectory data: (a )  roadside observers 
a t  various locations; (b) aerial photographs at  different instants; (c) moving 
observers. 
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flow, q = m/T, for the interval; e.g. the observer at x = x 3  in Fig. 1.3a 
observes a flow, q = 4/T, during 0 I t I T. It should be clear from Fig. 
1.3a that for long observation periods including many vehicles (m, T 
+ x> with comparable headways, 

m 

T =  C h , ,  
i =  I 

and therefore, on dividing both sides of this expression by m, we obtain 
the important relation: 

(1.10) 

i.e., under the conditions stated, the flow over an interval is approxi- 
mately equal to the reciprocal of the average headway seen by a 
stationary observer during the interval. We note that this relationship is 
exact if the observation period starts and ends immediately before the 
arrival of a vehicle. The concept of flow is equivalent to the terms 
‘volume’, used in certain traffic engineering circles, and ‘frequency’, used 
in connection with scheduled transportation modes. 

A similar treatment of the number of vehicles seen on a photograph, 
n, over a stretch of road of a given length, L, leads to the concept of 
density, k = n/L, over the stretch and a parallel relationship of the 
density with the average spacing: 

(1.11) 

As with headways, the quality of the approximation improves for L + x, 
and the relationship becomes exact when both ends of the interval are 
immediately ahead of a vehicle. 

It should be noted here that other vehicle characteristics (besides 
spacings and headways) can be averaged across space or time as well; 
e.g. vehicle occupancies, speeds, etc ... and that there is no a-priori 
reason to expect averages taken across space or time to be the same. 
Averages taken at a specific location (with time-varying over an interval) 
are called ‘time-means’, whereas those taken at an instant over a space 
interval are termed ‘space-means’; e.g. space-mean speed, V,, and time- 
mean speed, V t ,  are the terms used to denote the speed averages 
obtained in the aforementioned way. 

Fig. 1 . 3 ~  describes one more way in which trajectory data can be 
recorded (and in which the t, x diagram can be interpreted). It involves 
observers traveling at a constant speed vo that record the times at which 
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vehicles pass them. The observer trajectories are then plotted and used 
to locate points in the (t, x) plane through which the vehicle trajectories 
must pass. In Fig. 1 . 3 ~  traffic passes the slow-moving observer, but 
similar figures could be drawn for observers moving faster than traffic 
and moving against traffic; e.g. if observers on a fast-moving car pool (or 
contra-flow) lane record the times at which they pass individual vehicles 
on the general use lanes. Note that the interpretation of Fig. 1 . 3 ~  
generalizes the prior two interpretations because vo = 0 leads to Fig. 
1.3a and vo -+ to Fig. 1.3b. 

1.3 Applications of the (t, x) diagram 

Here we present two applications of the time-space diagram. The first 
application is a preview of traffic flow theory for an idealized case that, 
despite its simplicity, clearly reveals some interesting relationships 
between traffic flow variables; in this application, the (t, x) diagram 
helps in the mathematical development, but most importantly it shows 
physically why the derived expressions are true. The second application 
is a scheduling problem where vehicles compete for a common right-of- 
way; there the (t, XI diagram is also used as an aid for thinking that 
helps eliminate mistakes, and just as importantly, it can be used as an 
elegant way of displaying the solution that could be used in a profes- 
sional report. 

1.3.1 Traffic f low theoly with straight trajectories 

We consider a section of road length L that is observed for time T and 
assume that vehicles travel over the section (approximately) at constant 
speed without interacting with one another. This scenario could arise in 
lightly traveled multi-lane freeways with fast and slow vehicles, and in 
airport corridors with mechanical transportation devices that only a 
fraction of the people use. 

We will also assume that there are only a finite number of speeds v, 
that vehicles adopt and that the trajectories of each vehicle family are 
evenly spaced straight lines. This means that all the vehicles of family ‘1’ 
have the same headway within the family, h, .  Here, h,  denotes the time 
separation between two consecutive vehicles of family I ;  the headway 
between consecutive vehicles will in general be smaller and will not be 
constant. This can be seen clearly from the diagram of Fig. 1.4 for the 
special case where there are two vehicle classes, 1 = 1, 2. 
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Figure 1.4 Tirne-space trajectories of two vehicle families. 

It can be seen from the geometry of the figure that hivl = s 1  for each 
vehicle class, I, where s, is the spacing for the class. If the class flows, q,, 
and densities, k,, are defined over intervals containing many vehicles, 
we can accurately rewrite this relation as: 

by virtue of (1.10) and (l.ll).’ If (1.12) is now added across I ,  and we 
recognize that the total flow and density are: 

q = cq, and k =  C k , ,  
I I 

we find that: 
q = k x v , ( k , / k )  = C , k .  (1.13) 

1 

The second equality is justified on noting that the summation in the 
middle member of (1.13) defines a weighted average of the vehicle 
speeds where the weighting factors are the fraction of vehicles by type 
seen in an aerial photograph. (This statement follows from the definition 
of density, given earlier.) 
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The emphasis is given because the fractions of vehicle types seen in 
an aerial photograph are usually different from those that would be 
counted by a stationary observer (q,/q). To see this intuitively you 
should refer to Fig. 1.4 and note that a stationary observer sees 
approximately two fast vehicles for every slow one, but a photograph 
would show two slow ones for every fast one! You should ponder why, 
and realize that the stationary observer will invariably see higher 
fractions of fast vehicles than shown in the aerial photos, independent 
of the specific speeds, flows and densities of the vehicle families. (Can 
you imagine what would happen if one of the families had v, = 0; e.g. it 
corresponded to parked cars?). A related result which should come as 
no surprise is that the inequality Vl 2 V, is generally true8 for long 
observation intervals when traffic behaves as described in this section. 

A similar disparity should also be expected between time and space 
averages of other quantities that vary across families, but remain 
constant within a family. For example, if the fast vehicles of Fig. 1.4 are 
car-pools (with a 2 person vehicle occupancy) and the slow vehicles are 
driven without passengers, it should be clear that the average vehicle 
occupancy will be different depending on the method of observation. 
Can you figure out what the average vehicle occupancy measured by a 
moving observer with speed v3 (for vo = 0, v , ,  v2 and y-) would be in the 
example of Fig. 1.4? 

The same multiplicity of averages would be obtained for other mea- 
sures such as energy consumption and pollution generation that vary 
across vehicle classes with different speeds (e.g. buses and cars; 
commercial jets and private airplanes, etc ... ). Which is the ‘real average’ 
then? The answer to this question cannot be given absolutely. It 
depends on the practical problem that motivates your particular analysis 
and this is why it is important to understand the fundamentals. 

1.3.2 Closed loops 

It should also be noted that the (t,x) diagram can be used to describe 
closed loop systems. If we use x to denote the position of a vehicle 
within the loop (0 I x I L, where L is the length of the loop) then the 
vehicle’s trajectory will ‘disappear’ upon reaching the coordinate x = L, 
and will simultaneously reappear at x = 0. The trajectory of a vehicle 
that travels at a constant speed along the loop then adopts a ‘saw-tooth’ 
shape as shown in Fig. 1.5. 

The figure depicts the (parallel) trajectories of 4 vehicles equally 
spaced on the loop. Such a diagram could represent the behavior of 
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Traffic flow theory
7

§ Today: From traffic flow (traffic streams) to traffic flow theory

§ Traffic flow theory:
• Models and hypotheses for explaining traffic flow
• I.e., what would happen to traffic streams if they were to flow on roads 

under different conditions, potentially not yet observed

§ Models vs data

𝑎!"#(𝑠, 𝑣, Δ𝑣)
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Basic assumptions
8

1. Study of a single traffic stream, flowing on a facility with a single 
entrance and a single exit

2. Uninterrupted traffic
• Traffic regulated by interactions between vehicles, as opposed to being  

regulated by external means
• E.g. on a highway or at unsignalized intersections, as opposed to traffic lights, 

stop signs.

3. Stationary traffic conditions (vs. time and space-varying dynamics)
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Stationary vs non-stationary traffic
Stationary traffic conditions
(vs. time- or space-varying dynamics):

§ Traffic is stationary if it is a 
superposition of families of 
trajectories that are each 
parallel and equidistant.

9

Examples of non-stationary traffic
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Traffic stream variables
§ Main variables
• Flow
• Time headway
• Density
• Spacing
• Speed (space-mean, time-mean)

§ Aim: Obtain relationships that hold “on average”; i.e. for large 
stationary time-space regions containing many vehicles

10
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Formulas for traffic characteristics
13

§ Notation
• 𝑣! = velocity (mi/hr) of vehicle 𝑖 in section 𝐿 at time 𝑡"
• 𝑝# = pace (hr/mi) of vehicle 𝑗 during duration 𝑇 at

location 𝑥"
• 𝑢$ = velocity (mi/hr) of vehicle 𝑗,u$ =

%
&"

• 𝑡(𝑨) = total time spent in 𝑨 by all vehicles
• 𝑑(𝑨) = total distance traveled by vehicles in 𝑨

§ If traffic is stationary, then the two columns 
coincide, i.e. same values.
• Proof: 𝑣 = 𝑣! =

%
&"
, ∀𝑖, 𝑗

§ Then, for instance, density can be measured by 
counts at a fixed location.

C. Daganzo, Fundamentals of transportation and traffic operations, vol. 30. Pergamon Oxford, 1997. Chapter 4: Traffic flow theory.
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a. Key variables
b. Time vs space means

2. Fundamental diagrams (FDs)

3. Highway delay problem
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Time and space means
§ Space-mean: averages taken at an instant over 

a space interval
§ Time-mean: averages taken at a specific location 

(with time-varying over an interval)
§ Speed:

• !𝑣2: space-mean speed
• !𝑣3: time-mean speed

§ Other vehicle characteristics can be averaged across space or time. E.g., 
occupancies (number of persons per vehicle), energy consumption, emissions, 
etc.
• There is no a priori reason to expect averages taken across space or time to be the same.
• Example: You own two cars, they are both driven an equal distance of 100 miles. One gets 20 

miles per gallon (mpg), the other 50 mpg. Is the average mpg 35 (i.e. 45675
7

)?

15

𝑥!
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Time and space means
17

§ Notation:
• 𝑣8 = velocity (mi/hr) of vehicle 𝑖
• 𝑝9 = pace (hr/mi) of vehicle 𝑗
• 𝑢: = velocity (mi/hr) of vehicle 𝑗,u: =

;
<"

§ If traffic is stationary, then time-
mean speed = space-mean speed.
• Proof: 𝑣 = 𝑣8 =

;
<"
, ∀𝑖, 𝑗

C. Daganzo, Fundamentals of transportation and traffic operations, vol. 30. Pergamon Oxford, 1997. Chapter 4: Traffic flow theory.

𝑥!at time 𝑡!

Time-mean speed 𝑣-(𝑨)
1
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Time-mean speed 𝑣- 𝑨
mean over time duration (specific location)

Space-mean speed 𝑣 𝑨 ≡ 𝑣1 𝑨
mean over space interval (specific time)

Arithmetic mean
Harmonic mean
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Time and space means in practice
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Turner, Shawn M., William L. Eisele, Robert J. Benz, and Douglas J. Holdener. Travel time data collection handbook. No. FHWA-PL-98-035. United States. Federal Highway Administration, 1998. Chapter 1: Introduction. Link.
C. Daganzo, Fundamentals of transportation and traffic operations, vol. 30. Pergamon Oxford, 1997. Chapter 1: Time-space diagrams.

Time-mean speed 𝑣- 𝑨
mean over time duration (specific location)

Space-mean speed 𝑣 𝑨 ≡ 𝑣1 𝑨
mean over space interval (specific time)§ Time-mean speeds: Often how dual 

inductance loop detectors in traffic 
management systems are configured 
• Ex. arithmetic average of vehicle speeds 

over 20-second intervals

§ Space-mean speeds: In nearly all 
cases of traffic analysis, space-mean 
speeds should be used
• Statistically more stable in short 

segments/durations
• Weighs slower vehicles’ speeds more 

heavily

https://www.fhwa.dot.gov/ohim/tvtw/natmec/00020.pdf
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Time and space means in practice
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§ In practice, time-
mean and space-
mean speeds differ 
by 1-5%

§ Differences are 
greater when there is 
more variability in 
speed (more 
congestion)

Turner, Shawn M., William L. Eisele, Robert J. Benz, and Douglas J. Holdener. Travel time data collection handbook. No. FHWA-PL-98-035. United States. Federal Highway Administration, 1998. Chapter 1: Introduction. Link.

https://www.fhwa.dot.gov/ohim/tvtw/natmec/00020.pdf

