
This article was downloaded by: [18.9.61.111] On: 03 March 2023, At: 05:03
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

The Continuous-Time Service Network Design Problem
Natashia Boland, Mike Hewitt, Luke Marshall, Martin Savelsbergh

To cite this article:
Natashia Boland, Mike Hewitt, Luke Marshall, Martin Savelsbergh (2017) The Continuous-Time Service Network Design
Problem. Operations Research 65(5):1303-1321. https://doi.org/10.1287/opre.2017.1624

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2017, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2017.1624
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

OPERATIONS RESEARCH
Vol. 65, No. 5, September–October 2017, pp. 1303–1321

http://pubsonline.informs.org/journal/opre/ ISSN 0030-364X (print), ISSN 1526-5463 (online)

The Continuous-Time Service Network Design Problem
Natashia Boland,a Mike Hewitt,b Luke Marshall,a Martin Savelsbergha

aH. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; bQuinlan School
of Business, Loyola University Chicago, Chicago, Illinois 60660
Contact: natashia.boland@gmail.com (NB); mhewitt3@luc.edu, http://orcid.org/0000-0002-9786-677X (MH);
luke.jonathon.marshall@gmail.com (LM); martin.savelsbergh@isye.gatech.edu (MS)

Received: January 5, 2015
Revised: June 10, 2016; October 28, 2016
Accepted: January 25, 2017
Published Online in Articles in Advance:
July 25, 2017

Subject Classifications: networks/graph:
multicommodity; programming: integer:
algorithms; industries: transportation/shipping
Area of Review: Transportation

https://doi.org/10.1287/opre.2017.1624

Copyright: © 2017 INFORMS

Abstract. Consolidation carriers transport shipments that are small relative to trailer
capacity. To be cost effective, the carrier must consolidate shipments, which requires coor-
dinating their paths in both space and time; i.e., the carrier must solve a service network
design problem. Most service network design models rely on discretization of time—
i.e., instead of determining the exact time at which a dispatch should occur, the model
determines a time interval during which a dispatch should occur. While the use of time
discretization is widespread in service network design models, a fundamental question
related to its use has never been answered: Is it possible to produce an optimal continuous-
time solution without explicitly modeling each point in time? We answer this question in the
affirmative. We develop an iterative refinement algorithm using partially time-expanded
networks that solves continuous-time service network design problems. An extensive
computational study demonstrates that the algorithm not only is of theoretical interest
but also performs well in practice.

Funding: This material is based upon work supported by the National Science Foundation [Grant
CMMI-1435625].

Keywords: service network design • time-expanded network • iterative refinement

1. Introduction
Consolidation carriers transport shipments that are
small relative to trailer capacity. Such shipments are
vital to e-commerce. Consolidation carriers operate in
(1) the less-than-truckload (LTL) freight transport sec-
tor, a sector with annual revenues in the United States
alone of about $30 billion (Schulz 2014), and (2) the
small package/parcel transport sector, a sector with
much larger annual revenues, with one player alone
(UPS) reporting $54 billion in revenue in 2012. Both
LTL and small package carriers play a prominent role
in the fulfillment of orders placed online (as well as
other channels). Fast shipping times (and low cost) are
critical to the success of the online sales channel, and
e-tailers, such as Amazon.com, are continuously push-
ing the boundary, aiming for next-day and even same-
day delivery. These trends result in increased pres-
sure on LTL and small package transport companies to
deliver in less time (without increasing their cost). This
phenomenon is reflected in Figure 1, which shows the
freight profile for a large LTL carrier by service level. It
shows that over 80% of the carrier’s shipments need to
be delivered within two days.
To deliver goods in a cost-effective manner, a con-

solidation carrier must consolidate shipments, which
requires coordinating the paths for different shipments
in both space and time. The push toward rapid deliv-
ery reduces the margin for error in this coordination,

which necessitates planning processes that accurately
time dispatches. These planning processes have long
been supported by solving the so-called service network
design problem (Crainic 2000, Wieberneit 2008), which
decides the paths for the shipments and the services (or
resources) necessary to execute them. Service network
design decisions for a consolidation carrier have both a
geographic and a temporal component (e.g., dispatch
a truck from Chicago, Illinois to Atlanta, Georgia at
9:05 p.m.). A common technique for modeling the tem-
poral component is discretization; instead of deciding
the exact time at which a dispatch should occur (e.g.,
7:38 p.m.), the model decides on a time interval during
which the dispatch should occur (e.g., between 6 p.m.
and 8 p.m.).

When discretizing time, service network design
problems can be formulated on a time-expanded net-
work (Ford and Fulkerson 1958, 1962), in which a node
encodes both a location and a time interval, and solu-
tions prescribe dispatch time intervals for resources
(trucks, drivers, etc.) and shipments. Service network
design models calculate the costs for a set of dispatch
decisions by estimating consolidation opportunities—
i.e., by recognizing that prescribed dispatch time inter-
vals for shipments allow travel together using the same
resource. For example, shipments that should dispatch
from the same origin node to the same destination
node in the same dispatch time interval (say, from

1303

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

http://pubsonline.informs.org/journal/opre/
mailto:natashia.boland@gmail.com
mailto:mhewitt3@luc.edu
http://orcid.org/0000-0002-9786-677X
mailto:luke.jonathon.marshall@gmail.com
mailto:martin.savelsbergh@isye.gatech.edu

Boland et al.: The Continuous-Time Service Network Design Problem
1304 Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS

Figure 1. Freight Profile for a Large LTL Carrier by Service

One day

51%

Two days

31%

Three days

9%

Four days
6%

Five days
3%

Louisville, Kentucky to Jackson, Michigan between 6
and 11 p.m.) are candidates for consolidation.

Clearly, the granularity of the time discretization has
an impact on the candidate consolidation opportuni-
ties identified. At the same time, the granularity of
the time discretization also impacts the computational
tractability. With an hourly discretization of a week-
long planning horizon, 168 timed copies of a node rep-
resenting a location will be created. With a five-minute
discretization of a week-long planning horizon, 2,016
timed copies of a node representing a location will be
created. The latter discretization will likely yield a ser-
vice network design problem that is much too large
to fit into memory or solve in a reasonable amount of
time. (In his introduction to network flows over time,
Skutella 2009 also notes that the use of a discretiza-
tion that includes each possibly relevant time point
can be challenging computationally in many problem
settings.)

While there is widespread use of discretizations of
time and time-expanded networks in service network
design models (Jarrah et al. 2009, Andersen et al. 2011,
Erera et al. 2013, Crainic et al. 2016), we postulate
that the fundamental question related to their use has
not yet been answered: Is it possible to produce an opti-
mal “continuous”-time solution without explicitly modeling
each point in time? In this paper, we show that this ques-
tion can be answered in the affirmative. We refer to a
service network design problem in which time is mod-
eled in such a way that it accurately captures the con-
solidation opportunities as a continuous-time service
network design problem (CTSNDP). For all practical
purposes, a time-expanded network based on a one-
minute time discretization gives a CTSNDP. (There-
fore, in the remainder, we will assume that the travel
times and the times at which commodities become

available and are due are specified as integers.) Fur-
thermore, we call a time-expanded network that does
not include all the time points a partially time-expanded
network.
We develop a dynamic discretization discovery algo-

rithm that manipulates partially time-expanded net-
works and allows the solution of a CTSNDP with-
out ever creating a fully time-expanded network. The
algorithm repeatedly solves a service network design
problem defined on a partially time-expanded net-
work and refines the partially time-expanded network
based on an analysis of the solution obtained. Each par-
tially time-expanded network is such that the result-
ing service network design problem is a relaxation of
the CTSNDP. Furthermore, the solution to this relax-
ation can be converted to a feasible solution to the
CTSNDP by solving an appropriately defined linear
program. If the converted (or repaired) solution has
the same cost, it will be optimal. If not, then the lin-
ear programming solution identifies time points that
can be added to the partially time-expanded network
to ensure that an improved solution is obtained in the
next iteration. A flowchart of the high-level structure
of the dynamic discretization discovery algorithm can
be found in Figure 2. Thus, the dynamic discretiza-
tion discovery algorithm solves a sequence of small
mixed-integer programs (MIPs), rather than a single
large MIP.

An extensive computational study shows the efficacy
of the algorithm: instances with networks consisting of
30 nodes and 700 arcs, with 400 commodities, and a
planning horizon of about 8 hours, which, when using
a full-time discretization of 1 minute, leads to integer
programs with more than 1,500,000 variables and close
to 1,400,000 constraints, can often be solved to proven
optimality in less than 30 minutes. Furthermore, the
algorithm solves 97% of the several hundred instances
in our test set and does so, on average, in less than
15 minutes. For those it does not solve, the algorithm
produces, on average, a solution with a provable opti-
mality gap of 2.5% or less in two hours. Computational
results on a few instances derived from data from a

Figure 2. Flowchart of a Dynamic Discretization Discovery
Algorithm

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS 1305

real-world less-than-truckload carrier are also promis-
ing with high-quality solutions produced in two hours
or less.
To summarize, the main contributions of the paper

are (1) the development of an algorithm for effi-
ciently solving a continuous-time service network de-
sign problem and (2) demonstrating that an optimiza-
tion problem defined on a time-expanded network can
be solved to proven optimality without ever gener-
ating the complete time-expanded network. As time-
expanded networks are frequently used to model
transportation problems, we hope that the latter
will stimulate other researchers to explore similar
approaches in other contexts, and that that will ulti-
mately result in an improved ability to solve practically
relevant problems.

The remainder of the paper is organized as follows.
In Section 2, we review relevant literature. In Sec-
tion 3, we present a formal description of the CTSNDP
and discuss a property that (to some extent) motivates
our approach. In Section 4, we introduce an iterative
refinement algorithm for solvingCTSNDP. In Section 5,
we present and interpret the results of an extensive
computational study of the algorithm’s performance.
Finally, in Section 6, we finish with conclusions and a
discussion of future work.

2. Literature Review
The importance of incorporating temporal aspects into
flowmodels has been recognized since their inception.
Already in 1958, Ford and Fulkerson (1958) introduced
the notion of flows over time (also called dynamic flows).
They considered networks with transit times on the
arcs, specifying the amount of time it takes for flow to
travel from the tail of the arc to the head of the arc,
and sought to send a maximum flow from a source to
a sink within a given time horizon. They showed that a
flow-over-time problem in a network with transit times
can be converted to an equivalent standard (static) flow
problem in a corresponding time-expanded network.
The fundamental concept of an s-t-cut in a network
was extended to an s-t-cut over time as well (Anderson
et al. 1982, Anderson and Nash 1987). A comprehen-
sive overview of this research area can be found in
Skutella (2009).
Similarly, researchers have extended the minimum-

cost s-t-flow problem to include a temporal compo-
nent. Klinz and Woeginger (2004) show that, unlike
the static problem, the minimum cost s-t-flow-over-
time problem is weakly NP-hard. Fleischer and
Skutella (2007) provide a polynomial-time approxima-
tion scheme for this (and other) problems (see also
Fleischer and Skutella 2003).
A problem that is more closely related to the

CTSNDP is the multicommodity-flow-over-time prob-
lem (Hall et al. 2007), in which demands must be

routed from sources to sinks within a given time hori-
zon. Hall et al. (2007) characterizes when this problem
is weakly NP-hard. Topaloglu and Powell (2006) study
a time-staged stochastic integer multicommodity flow
problem.

The problems mentioned above assume a fixed time
horizon is provided as part of the input. Researchers
have also looked at flow models where the objective is
to minimize the time it takes to send a given amount
of flow. For example, Burkard et al. (1993) present an
algorithm that solves the quickest s-t flow problem in
strongly polynomial time. Similarly, Hoppe and Tardos
(2000) provide a polynomial-time algorithm to solve
the quickest transshipment problem. Researchers have
also studied the quickest multicommodity flow prob-
lem, for which Fleischer and Skutella (2007) provide
an approximation algorithm with performance guar-
antee of 2. Researchers have also studied problems that
seek flows with an earliest arrival property, in which
the flows arriving at the destination at each time point
are maximized (Gale 1958, Minieka 1973, Megiddo
1974, Jarvis and Ratliff 1982, Hoppe and Tardos 1994,
Tjandra 2003, Baumann and Skutella 2006).

The CTSNDP adds an additional layer of com-
plexity to the multicommodity flow over time prob-
lem by also incorporating network design decisions,
which introduces a packing component to the prob-
lem. Kennington and Nicholson (2010) study a related
problem—theuncapacitatedfixed-chargenetworkflow
problem defined on a time-expanded network—but
focus on choosing appropriate artificial capacities on
the arcs to strengthen the linear programming relax-
ation of the natural integer programming formula-
tion, and they only consider instances with relatively
small time-expanded networks. Fischer and Helmberg
(2014) develop methods for dynamically generating
time-expanded networks but do so in the context of
solving shortest path problems, and without having to
make design decisions.

Powell et al. (1995) discuss the use of time-expanded
networks in logistics planning models, noting that (at
that time) most models create a time-expanded net-
work by simply replicating the underlying network
each time period.

Research on using partial time discretizations and
dynamically adjusting a time discretization is scarce.
Fleischer and Skutella (2007) use partial discretizations
to generate (near-)optimal solutions to quickest-flow-
over-time problems. (They refer to a partially time-
expanded network as a condensed time-expanded net-
work.)Wang andRegan (2009) analyze the convergence
of a time window discretization method for the trav-
eling salesman problem with time windows (TSPTW)
introduced by Wang and Regan (2002) to obtain lower
bounds on the optimal value. Their analysis shows that
iteratively refining the discretization converges to the

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
1306 Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS

optimal value. Dash et al. (2012) present an extended
formulation for the TSPTW based on partitioning the
time windows into subwindows called buckets (which
can be thought of as discretizing the time window).
Theypresent cuttingplanes for this formulation that are
computationally more effective than the ones known in
the literature because they exploit the division of the
time windows into buckets. They propose an iterative
refinement scheme to determine appropriate partitions
of the time windows. We provide more detail on the
similarities and differences between our method and
that of Dash et al. (2012) in Section 4.5.
Unlike the quickest-flow-over-time problems men-

tioned above, optimal solutions to CTSNDP need to
strike a balance between the flow time from origin to
destination and the capacity utilization of the arcs in
the network, with flows waiting at the tail of an arc
to be consolidated with other flows using the same
arc. Furthermore, the continuous time flow models
described above do not explicitly capture the delivery
time constraints encountered in many transportation
problems. To the best of our knowledge, we are the first
to look at dynamically generating a (partially) time-
expanded network for a problem that captures design
decisions as well as flow time windows.

3. Problem Description
Let D � (N ,A) be a network with node set N and
directed arc set A. We will often refer to D as a
“flat” network, as opposed to a time-expanded net-
work, because the nodes in N model physical loca-
tions. Associated with each arc a � (i , j) ∈ A is a travel
time τi j ∈ �>0, a per-unit-of-flow cost ci j ∈ �>0, a fixed
cost fi j ∈ �>0, and a capacity ui j ∈ �>0. Let K denote a
set of commodities, each of which has a single source
ok ∈ N (also referred to as the commodity’s origin), a
single sink dk ∈ N (also referred to as the commod-
ity’s destination), and a quantity qk that must be routed
along a single path from source to sink. Finally, let
ek ∈ �>0 denote the time commodity k becomes avail-
able at its origin and lk ∈ �>0 denote the time it is
due at its destination. Without loss of generality, we
assume that mink∈K ek � 0. The service network design
problem (SNDP) seeks to determine paths for the com-
modities and the resources required to transport the
commodities along these paths so as to minimize the
total cost (i.e., fixed and flow costs) and ensure that
time constraints on the commodities are respected. The
SNDP is typically modeled using a time-expanded net-
work. A time-expanded network DT � (N T ,HT ∪ AT)
is derived from D and a set of time points T �

⋃
i∈N T i

with T i � {t i
1 , . . . , t

i
ni
}. The node set N T has a node (i , t)

for each i ∈ N and t ∈ T i . The arc set HT contains the
arcs ((i , t i

k), (i , t i
k+1)) for all i ∈ N and k � 1, . . . , ni − 1,

known as holdover arcs, and the arc set AT contains
arcs of the form ((i , t), (j, t̄))where (i , j) ∈A, t ∈T i , and

t̄ ∈T j . Note thatN T uniquely determinesHT , and that,
henceforth, we will, for any given N T , make use of HT

without explicit definition.
Arcs of the form ((i , t i

k), (i , t i
k+1)) model the possi-

bility of holding freight in location i, which may be
advantageous if the freight can be consolidated with
freight that arrives in location i at a later point in time.
We assume that freight can be held at a location at
no cost. The algorithm to be presented in the next
section relies critically on this assumption. To achieve
freight consolidation and be profitable, many consoli-
dation carriers own and operate their own network of
terminals. For those carriers, holding freight at a ter-
minal for a short amount of time, if necessary, incurs
little or no additional costs, and this assumption is
appropriate and not limiting. Carriers that operate out
of third-party-owned terminals may incur additional
costs when holding freight. However, those costs are
typically significantly less than the transportation sav-
ings achieved by holding freight to achieve consolida-
tion, and thus not modeling them is unlikely to lead to
the wrong decision.

Arcs of the form ((i , t), (j, t̄))model the possibility to
dispatch freight from location i at time t to arriveat loca-
tion j at time t̄. Note that an arc ((i , t), (j, t̄)) does not
have to satisfy t̄ − t � τi j . In fact, the flexibility to intro-
duce arcs ((i , t), (j, t̄)) with a travel time that deviates
from the actual travel time τi j of arc (i , j) is an essen-
tial feature of time-expanded networks and provides a
mechanismtocontrol the sizeof the time-expandednet-
work. Unfortunately, deviating from the actual travel
times also introduces approximations that may have
undesirable effects. Consider, for example, using a dis-
cretization of time into hours andmodeling travel from
Chicago, Illinois toMilwaukee,Wisconsin, which takes
about 95 minutes if departure is at 6 p.m. When creat-
ing an arc ((Chicago, 6 p.m.), (Milwaukee, t̄)), one must
choose whether to set t̄ � 7 p.m. or t̄ � 8 p.m. Both choices
have downsides. Setting t̄ � 7 p.m. implies that a ser-
vice network design model using this time-expanded
network perceives freight traveling on this arc as arriv-
ing in Milwaukee in time to consolidate with freight
departing from Milwaukee at 7 p.m., which is not
actually possible. However, setting t̄ � 8 p.m. implies
that a service network design model using this time-
expanded network perceives freight destined for Mil-
waukee and due there at 7:45 p.m. traveling on this arc
as arriving inMilwaukee too late, which is not the case.
The latter shows that not only travel times have to be
mapped onto the time-expanded network but also the
times that commodities are available at their origin and
due at their destination. The typical mapping rounds
up travel times, rounds up times that commodities are
available, and rounds down times that commodities
are due, because this ensures that any feasible solution

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS 1307

to the SNDPmodel on the time-expanded network can
be converted to a true feasible solution (i.e., a feasible
solution in real or continuous time).
A regular and fully time-expanded networkD∆T asso-

ciated withD and discretization parameter ∆ ∈�>0 has
T i � {0,∆, 2∆, . . . ,K∆} for all i ∈N and for K ∈�>0 with
maxk∈K lk/∆ 6 K < maxk∈K lk/∆ + 1. Furthermore, for
every arc (i , j) ∈A and every node (i , t) ∈N T , there is an
arc ((i , t), (j, t +∆dτi j/∆e) in AT (unless t +∆dτi j/∆e) >
K∆). The networks D∆T have become a popular tool in
the design of approximation algorithms for flow-over-
time problems, where they are known as condensed
time-expanded networks (Fleischer and Skutella 2007,
Groß et al. 2012, Groß and Skutella 2012).
We define SND(DT) to be the service network design

problem defined over a time-expanded network DT .
Let y t t̄

i j denote the number of times arc (i , j) must be
installed to accommodate dispatches from i at time t
arriving at time t̄ in j. (Because these variables capture
resourcemovements such as, e.g., truck or trailermove-
ments, we allow y t t̄

i j to take on values greater than 1.)
Let xkt t̄

i j represent whether commodity k ∈ K travels
from i to j departing at time t to arrive at t̄. Since we
have assumed that a commodity must follow a single
path from its origin to its destination, the variables xkt t̄

i j
are binary. For presentational convenience, we assume
that the nodes (ok , ek) and (dk , lk) are in N T for all
k ∈K. (Otherwise, the nodes (ok , t)with t � arg min{s ∈
T i | s > ek} and (dk , t′) with t′ � arg max{s ∈ T i | s < lk}
can be used instead.)
Thus, SND(DT) seeks

z(DT)� min
{ ∑
((i , t), (j, t̄))∈AT

fi j y
t t̄
i j +

∑
k∈K

∑
((i , t), (j, t̄))∈AT

ci j qk xkt t̄
i j

}
subject to∑
((i , t), (j, t̄))∈AT∪HT

xkt t̄
i j −

∑
((j, t̄), (i , t))∈AT∪HT

xkt̄t
ji

�

1 (i , t)� (ok , ek),
−1 (i , t)� (dk , lk),
0 otherwise;

∀ k ∈K, (i , t) ∈ N T , (1)∑
k∈K

qk xkt t̄
i j 6 ui j y

t t̄
i j ∀ ((i , t), (j, t̄)) ∈AT ; (2)

xkt t̄
i j ∈ {0, 1} ∀ ((i , t), (j, t̄)) ∈AT ∪HT , k ∈K; (3)

y t t̄
i j ∈ �>0 ∀ ((i , t), (j, t̄)) ∈AT . (4)

That is, SND(DT) seeks to minimize the sum of fixed
costs (the first term, which models transportation-
related costs) and variable costs (the second term,
which models handling-related costs). Note that we
implicitly assume that holding freight at a location
does not result in additional costs. Constraints (1)
ensure that each commodity departs from its origin

when it becomes available and arrives at its destina-
tion when it is due. Note the presence of holdover arcs
allows a commodity to arrive early at its destination or
depart late from its origin. Constraints (2) ensure that
sufficient trailer capacity is available for the commodi-
ties that are sent from location i at time t to location j at
time t̄ . Constraints (3) and (4) define the variables and
their domains. We denote an optimal solution to this
problem by (x(DT), y(DT)) and its value with z(DT).

Observe that when using a regular and fully time-
expanded network D∆T , no approximations are intro-
duced when τi j/∆, ek/∆, and lk/∆ are naturally inte-
ger. In that case, a feasible solution to SND(D∆T) is also
feasible in continuous time and an optimal solution
to SND(D∆T) is also optimal in continuous time. Let
∆̂ � GCD(GCD(i , j)∈A τi j ,GCDk∈K ek ,GCDk∈K lk), where
GCD is the greatest common divisor. We define
CTSNDP to be SND(D∆̂T). We use T̂ �

⋃
i∈N T̂ i to denote

the time points included inD∆̂T , N
∆̂
T to denote its nodes,

and A∆̂T ∪H ∆̂T to denote its arcs.
The fully time-expanded network D∆̂T tends to be

prohibitively large for practical instances. Further-
more, it typically contains nodes that are superfluous.
For example, a node (i , t) ∈ N ∆̂T that no commodity
k ∈K can visit (possibly because doing so would pre-
vent the commodity reaching its destination on time)
is superfluous. Therefore, a fundamental question is
whether a smaller set of nodes N T ⊂N ∆̂T and set of arcs
AT ⊂ A∆̂T can be determined a priori, such that solv-
ing SND(DT) yields an optimal solution to SND(D∆̂T).
Proposition 1 shows how to construct one such set, T .

Proposition 1. To ensure that any optimal solution to
SND(DT) is an optimal solution to CTSNDP, it is suffi-
cient to include only time points in T that are determined by
direct travel time paths starting at the origin of a commodity
at the time that commodity becomes available; i.e., it is suf-
ficient for T to consist only of time points of the form ek for
some commodity k ∈K or of the form ek +

∑
a∈P τa for some

commodity k ∈K and some path P ⊆ A originating at ok .

Proof. Consider an optimal (continuous-time) solu-
tion. Shift all dispatch times to be as early as possible
without changing any consolidations. This implies that
each dispatch time at a node is now determined by the
time a commodity originating at that node becomes
available or by the arrival time of another commodity
at the node. Suppose there is a dispatch time that is not
at a time point of the form defined in the statement of
the theorem. Choose the earliest such dispatch time t.
Because this dispatch time t cannot occur at the time a
commodity becomes available, it must be determined
by the arrival time of a commodity; i.e., there must be
a commodity dispatched on some arc a ∈ A at time
t′ � t − τa . However, because of the choice of t and the
assumption that all travel times are positive, it must be

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
1308 Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS

that t′ is one of the time points defined in the statement
of the theorem. But, since t � t′ + τa , t itself must be a
time point of the form defined in the statement of the
theorem, which contradicts its definition. Q.E.D.

The set of time points defined in Proposition 1
may still be prohibitively large for practical instances
and is thus not enough, by itself, to enable solution
of CTSNDP. However, it motivates, in part, one of
the main ideas underlying our approach to solving
CTSNDP. We iteratively refine (expand) a set of time
points T , containing time points 0, ek , and lk for k ∈K,
and some time points of the form t � ek +

∑
a∈P τa for

some commodity k ∈ K and some path P ⊆ A origi-
nating at ok , until we can prove that the solution to
SND(DT) for a carefully chosen arc set AT can be con-
verted to an optimal solution to CTSNDP. The details
of the approach are provided in the next section.

4. An Algorithm for Solving CTSNDP
Our approach for solving CTSNDP can be thought of
as a dual ascent procedure, because it repeatedly solves
and refines a relaxation of CTSNDP until the solution
to the relaxation can be converted to a feasible solu-
tion to CTSNDP of the same cost (and hence it is an
optimal solution). Specifically, the approach repeatedly
solves an instance of SND(DT), whereDT has carefully
chosen time points, carefully chosen arcs, and carefully
chosen arc travel times. Because T i may only contain
a small subset of the time points in T̂ i for i ∈ N and
the set of time points at different locations may differ
(i.e., T i may be different from T j for i , j), we refer
to the time-expanded network DT as a partially time-
expanded network. In the description of our algorithm,
we will often refer to a “timed copy” of arc (i , j) ∈ A
at node (i , t) ∈ N T , which will mean an arc of the form
((i , t), (j, t̄)) ∈ AT . These partially time-expanded net-
works will have four important properties, which we
discuss next. In all that follows, we will, for notational
convenience, but without loss of generality, assume
that ∆̂� 1.

Property 1. For all commodities k ∈ K, the nodes (ok , ek)
and (dk , lk) are in N T .

Property 2. Every arc ((i , t), (j, t̄)) ∈AT has t̄ 6 t + τi j .

Figure 3. Travel Times of Timed Copies of (j, k); Travel Times Do Not Exceed the Travel Time of Arc (j, k)

k

j

tt = 3

(a) Flat arc (j, k) (b) Different timed copies of (j, k) can model travel time differently

k

j

k

j

k

j j

k

t t � t � + 1 t �� t �� + 3 t ��� – 1 t ���

Property 3. For every arc a � (i , j) ∈ A in the flat net-
work, D, and for every node (i , t) in the partially time-
expanded network, DT � (N T ,AT ∪ HT), there is a timed
copy of a in AT starting at (i , t).
Property 2 implies that we work with timed copies

of an arc that are either of the correct length or are too
short. This is illustrated in Figure 3, where we depict
different timed copies of an arc (j, k) ∈ A that may be
created by the algorithm. Observe that the lengths (or
travel times) of the timed copies are different for the
different dispatch times t , t′, t′′, and t′′′, and that the
travel time of a timed copy may even be negative (as is
the case for dispatch time t′′′).
Definition 1. If DT satisfies Properties 2 and 3, we say
that DT has the early arrival property.

In what follows, it is useful to observe that any
sequence of (non-holdover) arcs,

((i1 , t1), (j1 , t
′
1)), ((i2 , t2), (j2 , t

′
2)), . . . , ((iη , tη), (jη , t′η)),

in a time-expanded network, DT � (N T ,AT ∪ HT),
where ((ih , th), (jh , t′h)) ∈ AT for each h � 1, . . . , η,
induces a (unique) valid path in DT , formed by the
addition of appropriate holdover arcs, provided that
jh � ih+1 and t′h 6 th+1, for all h � 1, . . . , η− 1.
Definition 2. For any pair of nodes in the flat network,
j, j′ ∈ N , we define the distance from j to j′, denoted by

¯
τ j, j′ , to be the length of any shortest path, in the flat
network, from j ∈N to j′ ∈N , with respect to the travel
times, τ.
Lemma 1. LetDT � (N T ,AT) be a partially time-expanded
network that satisfies Property 1 and has the early arrival
property. Then for each commodity k ∈K and each node in
the flat network, i ∈N , there exists a timed node (i , t) ∈N T ,
with t 6 ek + ¯

τok , i .
Proof. Let k ∈ K. The result holds trivially, by Prop-
erty 1, if i � ok , so consider i ∈N with i , ok . We proceed
by induction on the number of arcs in the shortest path
in the flat network from ok to i with respect to τ.
Suppose i ∈ N has a shortest path from ok given by

the single arc (ok , i) ∈A. Then it must be that
¯
τok , i � τok , i .

By Properties 1–3, there exists a t 6 ek + τok , i � ek + ¯
τok , i

with ((ok , ek), (i , t)) ∈ AT , so it must be that (i , t) ∈ N T ,
as required.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS 1309

Now suppose that for all i ∈ N with a shortest path
from ok having η − 1 arcs, with η > 2, there exists a
timed node (i , t) ∈N T , with t 6 ek + ¯

τok , i , and consider a
node j ∈N with a shortest path from ok having η arcs—
say, P � ((j0 , j1), (j1 , j2), . . . , (jη−1 , jη))—where j0 � ok and
jη � j is such a path. Bywell-known properties of short-
est paths, ((j0 , j1), (j1 , j2), . . . , (jη−2 , jη−1)) is a shortest
path from j0 � ok to jη−1, so, by the inductive assump-
tion, there exists (jη−1 , t) ∈ N T , with t 6 ek + ¯

τok , jη−1
. By

Property 3, there must exist t′ with ((jη−1 , t), (jη , t′)) ∈
AT , and by Property 2, it must be that t′ 6 t + τ jη−1 , jη ,
and hence

t′ 6 ek + ¯
τok , jη−1

+ τ jη−1 , jη

� ek +

η−1∑
h�1

τ jh−1 , jh + τ jη−1 , jη � ek +

η∑
h�1

τ jh−1 , jh � ek + ¯
τok , jη .

The result follows by induction. Q.E.D.
Theorem 1. Let DT be a partially time-expanded network
that satisfies Property 1 and has the early arrival property.
Then SND(DT) is a relaxation of the CTSNDP.

Proof. Consider an optimal solution (x̄(D∆̂T), ȳ(D∆̂T)) to
CTSNDP and let

A∗ � {((i , t), (j, t + τi j)) ∈A∆̂T | ȳ t , t+τi j
i j > 0}

(recalling the assumption that ∆̂ � 1). Furthermore,
let K((i , t), (j, t+τi j)) represent the set of commodities dis-
patched on arc ((i , t), (j, t + τi j)) ∈ A∗, in this optimal
solution; i.e., let

K((i , t), (j, t+τi j)) � {k ∈K | x̄
k , t , t+τi j
i j > 0}.

In what follows, we will identify each arc a ∈A∗ with
a unique arc in µ(a) ∈AT and construct (x(DT), y(DT))
so that the commodity flow represented by x and
trailer capacity represented by y, on each timed arc of
the form µ(a), is exactly that of x̄ and ȳ, respectively,
on a, and so that (x , y) is feasible for SND(DT) and has
cost identical to the optimal value of CTSNDP.
Specifically, we define the mapping µ: A∗→ AT as

follows. For a given a � ((i , t), (j, t + τi j)) ∈ A∗, Ka , ∅,
and for all k ∈Ka , it must be that ek + ¯

τok , i 6 t. Thus, by
Lemma 1, there exists t′ 6 t with (i , t′) ∈ N T . Therefore
ρi(t), defined to be the latest time point at or before t so
that (i , ρi(t)) ∈ N T (i.e., ρi(t) � arg max{s ∈ T i | s 6 t}),
is well defined. By Property 3, there must exist a t′with
((i , ρi(t)), (j, t′)) ∈ AT . Choose σ(a) to be any such t′,
and define µ(a)� ((i , ρi(t)), (j, σ(a))).
We may now define the trailer capacity on each

timed arc ã � ((i , t̃), (j, t̃′)) ∈AT by summing the trailer
capacities in the optimal solution on all arcs that map
to ã under µ:

y t̃ t̃′
i j �

∑
a�((i , t), (j, t+τi j))∈A∗ :

µ(a)�ã

y
t , t+τi j

i j ,

where the right-hand side is taken to be zero if no arcs
in A∗ map to ã, under µ.
To construct the commodity flows in DT , we will

show that the sequence of (non-holdover) arcs, in
each commodity’s path in the optimal solution, maps,
under µ, to a sequence of arcs in AT that induce a valid
path inDT from the commodity’s origin node in N T to
its destination in N T .

For each commodity k, let P̄k
T denote the path from

(ok , ek) to (dk , lk) in D∆̂T induced by the optimal com-
modity flow, x̄; i.e.,

P̄k
T �{((i , t), (j, t′)) ∈A∆̂T ∪H ∆̂T | x̄k , t , t′

i j > 0}
�{((i , t), (j, t′)) ∈ A∗ ∪H ∆̂T | x̄k , t , t′

i j � 1}.

Say P̄k
T is the path uniquely induced by the sequence of

arcs a1 , . . . , aη ∈A∗, together with holdover arcs linking
from (ok , ek) to the head of a1 and from the tail of aη

to (dk , lk). Then we may write ah � ((ih , th), (ih+1 , th+1)),
with th+1 � th + τi j , for h � 1, . . . , η− 1.

We claim that the sequence of arcs µ(a1), . . . ,
µ(aη)∈AT induces, with the addition of appropriate
holdover arcs, a valid path inDT from (ok , ek) to (dk , lk).
To prove this claim, observe that for any h ∈ {1, . . . ,
η−1}, we have µ(ah)� ((ih , ρih

(th)), (ih+1 , σ(ah))), where
ρih
(th) � argmax{s ∈ T ih

| s 6 th}, and so ρih
(th)6 th ,

and, by Property 2, σ(ah) 6 ρih
(th)+ τi j . Thus, σ(ah) 6

th + τi j � th+1. Recall that, by definition, σ(ah)∈T ih+1
,

and so it must be that ρih+1
(th+1) > σ(ah). This shows

that µ(a1), . . . , µ(aη) induces a valid path in DT from
(ok , ρok

(t1)) to (dk , σ(aη)). Now itmust be that ρok
(t1)> ek ,

since t1 > ek , and it must be that σ(aη)6 lk since σ(aη)6
tη+1 6 lk . Thus by including appropriate holdover arcs
at ok and dk , our claim follows, and we set xk , t , t′

i j �1 for
all arcs ((i , t),(j, t′)) ∈AT ∪HT that are in the resulting
path inDT from (ok , ek) to (dk , lk).

Now, it is not hard to see that solution (x , y) con-
structed in this way is feasible for SND(DT), and it
replicates solution (x̄ , ȳ) to CTSNDP in the sense that
the commodities flow along the same paths (in the flat
network) and the same consolidations occur. Hence the
two solutions have identical objective function value.
Thus SND(DT) is a relaxation of the CTSNDP. Q.E.D.

Note that the proof, and thus the theorem, relies on
the fact that holding freight at a location does not result
in additional cost.

The following lemma regarding partially time-ex-
panded networks with the early arrival property will
be useful when we refine a partially time-expanded
network during the course of our algorithm. We omit
its proof, since it follows immediately from the defini-
tions of Properties 2 and 3.

Lemma 2. If a partially time-expanded networkDT has the
early arrival property, ((i , t), (j, t′)) ∈ AT , and (j, t′′) ∈ N T

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
1310 Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS

with t′′ 6 t + τi j , then the partially time-expanded network
in which arc ((i , t), (j, t′)) is replaced with arc ((i , t), (j, t′′))
will also have the early arrival property.

There are many partially time-expanded net-
works DT that satisfy Properties 1–3. We restrict our-
selves to partially time-expanded networks with arc
sets AT that satisfy one additional property.

Property 4. If arc ((i , t), (j, t′)) ∈ AT , then there does not
exist a node (j, t′′) ∈ N T with t′ < t′′ 6 t + τi j .

Definition 3. If DT satisfies Property 4, we say that DT

has the longest-feasible-arc property.

Observe that, for a given T , (and N T), there is a
unique set of timed arcs that satisfy both the early
arrival and the longest-feasible-arc properties. To see
this, first note that if ((i , t), (j, t′)) and ((i , t), (j, t′′)) are
both in AT for some t′ , t′′, where, without loss of gen-
erality, t′ < t′′, then t′ < t′′ 6 t + τi j by Property 2, and
the longest-feasible-arc property fails. Thus for each
(i , t) ∈ N T and each (i , j) ∈ A, there can be at most one
arc of the form ((i , t), (j, t′) in AT satisfying both prop-
erties. For AT satisfying Property 3 there must be at
least one such arc. Hence, if AT satisfies both prop-
erties, there is exactly one arc of the form ((i , t), (j, t′)
in AT for each (i , t) ∈ N T and (i , j) ∈ A. By Proper-
ties 2 and 4, it must be that t′ � arg max{s | s 6 t + τi j ,
(j, s) ∈ N T }.
We restrict ourselves to arc sets with the longest-

feasible-arc property as a result of the following
theorem.

Theorem 2. For a fixed T , (and N T), among the partially
time-expanded networks DT with the early arrival prop-
erty, the one with the longest-feasible-arc property induces
an instance of SND(DT) with the largest optimal objective
function value.

Proof. Consider a partially time-expanded network
DLF

T � (N T ,A
LF
T ∪ HT) with arc set ALF

T that has the
longest-feasible-arc property and a partially time-
expanded networkD′T � (N T ,A

′
T ∪HT)with arc set A′T

that does not. Assume that both networks have the
early arrival property. We will show that any solu-
tion to SND(DLF

T) can be converted to a solution to
SND(D′T) of equal value. Thus, the optimal objective
function value of SND(D′T) can be no greater than that
of SND(DLF

T).
Consider a solution (x(DLF

T), y(DLF
T)) to the prob-

lem SND(DLF
T) and an arc ((i , t), (j, t′)) ∈ ALF

T such that
y tt′

i j (D
LF
T) > 0 and all arcs of the form ((i , t), (j, t′′)) ∈ A′T

have t′′ < t′. If no such arc exists, then the solution is
clearly feasible for SND(D′T). Thus, suppose such an
arc exists.
Because both networks are defined on the same

node set N T , the path from (j, t′′) to (j, t′) exists in
(N T ,HT). Consequently, we can adapt the solution

(x(DLF
T), y(DLF

T)) for this arc to one for the SND(D′T) by
assigning y tt′′

i j (D
′
T) � y tt′

i j (D
LF
T) and routing the corre-

sponding commodity flows on the path formed by con-
catenating arc ((i , t), (j, t′′)) with the path from (j, t′′)
to (j, t′). Note that the cost of this change is 0, because
we have assumed that there is no cost associated with
using the holdover arcs. Because this change leaves any
commodities that traveled on the arc ((i , t), (j, t′)) in the
solution to SND(DLF

T) at the same node (j, t′), we can
repeat this process one arc at a time and are left with a
solution to the SND(D′T) of equal value. Q.E.D.

Theorem 1, and to a lesser extent Theorem 2, pro-
vide the basis for our iterative-refinement algorithm
for solving CTSNDP; Algorithm 1 presents a high-level
overview.

Algorithm 1 (Solve-CTSNDP)
Require: Flat network D� (N ,A), commodity set K
1: Create a partially time-expanded network DT

satisfying Properties 1–4
2: while not solved do
3: Solve SND(DT)
4: Determine whether the solution to SND(DT)

can be converted to a feasible solution
to CTSNDP with the same cost

5: if it can be converted then
6: Stop. The converted solution is optimal

for CTSNDP.
7: else
8: The solution to SND(DT)must use at least

one arc that is “too short.” Refine the
partially time-expanded network DT

by correcting the length of at least one such
arc, in the process adding at least
one new time point to T i for some i ∈ N .

9: end if
10: end while.

Before discussing the various components of the
algorithm inmore detail, we prove the following result.

Theorem 3. Solve-CTSNDP terminates with an optimal
solution.

Proof. The algorithm terminates when the optimal
solution to SND(DT) can be converted to a solution
of CTSNDP with the same cost. Because SND(DT) is
a relaxation of CTSNDP (Theorem 1), the converted
solution must be an optimal solution to CTSNDP.

Furthermore, at every iteration in which Solve-
CTSNDP does not terminate, the length of at least one
arc a ∈ AT is increased to its correct length. Because
there are a finite number of time points and arcs, at
some iteration all arcs inAT must have travel times that
correspond to the actual travel time of the correspond-
ing arc in the flat network, in which case the solution to
SND(DT) is a solution to CTSNDP and the algorithm
terminates. Q.E.D.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS 1311

Because arcs inAT can be too short, it is possible that
a solution to SND(DT) contains a path for a commodity
k ∈ K that is too long; i.e., its actual length or dura-
tion exceeds the available time lk − ek . We avoid such
solutions by adding valid inequalities to SND(DT).
More specifically, we prevent paths that are too long by
adding the following inequality to SND(DT):∑

((i , t), (j, t′))∈AT

τi j x
kτ′
i j 6 lk − ek . (5)

4.1. Creating an Initial Partially
Time-Expanded Network

The initial partially time-expanded network consists of
nodes (ok , ek) and (dk , lk) for all k ∈ K and (u , 0) for
all u ∈ N . For each node (i , t) ∈ N T and arc (i , j) ∈ A,
we find the node (j, t′) with the largest t′ such that
t′ 6 t + τi j and add arc ((i , t), (j, t′)) to AT . Note that
because N T includes nodes (u , 0) for u ∈N , it is always
possible to find such a node (j, t′). (Note, too, that we
may have t′ < t, in which case the arc travels backward
in time.) Finally, for all nodes (i , t) and (i , t′) such that
t′ is the smallest time point with t′ > t, we add arc
((i , t), (i , t′)) toHT . It is not hard to see that this partially
time-expanded network satisfies Properties 1–4. For a
detailed description of Create-initial, see Algorithm 2.

Algorithm 2 (Create-initial)
Require: Directed network D� (N ,A),

commodity set K
1: for all k ∈K do
2: Add node (ok , ek) to N T

3: Add node (dk , lk) to N T

4: end for
5: for all u ∈ N do
6: Add node (u , 0) to N T

7: end for
8: for all (i , t) ∈ N T do
9: for all (i , j) ∈A do
10: Find largest t′ such that (j, t′) ∈ N T and

t′ 6 t + τi j and add arc ((i , t), (j, t′)) to AT

11: end for
12: Find smallest t′ such that (i , t′) ∈ N T and t′ > t

and add arc ((i , t), (i , t′)) to HT

13: end for.

4.2. Refining a Partially Time-Expanded Network
It is necessary to refine DT when the solution to
SND(DT) cannot be converted to a feasible solution to
CTSNDP with the same cost, which can happen when
an arc in AT is “too short.” When refining DT , we
ensure that (1) the length of at least one arc that is too
short is corrected and (2) the resulting partially time-
expanded network again satisfies Properties 1–4.
More specifically, when we lengthen an arc ((i , t),
(j, t′)) that is too short (i.e., t′ < t + τi j), we replace
it with the arc ((i , t), (j, t + τi j)). Because DT has the
longest-feasible-arc property, node (j, t + τi j) was not

in N T and will have to be added to N T . Lengthening
arc ((i , t), (j, t′)) to ((i , t), (j, t+ ti j)) is a two-step process
based on the following two lemmas. Details of the two
steps are provided in Algorithms 4 and 5, respectively,
and applied in sequence in Algorithm 3.

Lemma 3. If a time-expanded network DT has the early
arrival property, and (1) a new time point t i

new with t i
k <

t i
new < t i

k+1 is added to T i � {t i
1 , . . . , t

i
ni
}, (2) a new node

(i , t i
new) is added to N T , and (3) for every arc ((i , t i

k), (j, t̄))
in DT , a new arc ((i , t i

new), (j, t̄)) is added to AT , then the
resulting time-expanded network again has the early arrival
property.

Proof. The only new arcs added to AT are those of
the form ((i , t i

new), (j, t̄))where ((i , t i
k), (j, t̄))was already

in AT and t i
new > t i

k . If DT already satisfied Property 2,
then t̄ 6 t i

k + τi j . Hence t̄ < t i
new + τi j , and Property 2 is

preserved. The only new node added is (i , t i
new). Now

if DT already satisfied Property 3, it must be that for
all (i , j) ∈ A, there exists a timed arc ((i , t i

k), (j, t̄)) ∈AT

for some t̄. But for each such arc, the new arc ((i , t i
new),

(j, t̄)) is added to AT . Thus Property 3 is preserved,
too. Q.E.D.

Unfortunately, after adding the new time point,
the new node, and the new arcs, the partially time-
expanded network no longer satisfies the longest-
feasible-arc property. However, a few simple changes
to the network restore the longest-feasible-arc prop-
erty while maintaining the early arrival property, as is
shown in the following lemma.

Lemma 4. After refining a partially time-expanded network
DT having the longest-feasible-arc property by adding new
time point t i

new with t i
k < t i

new < t i
k+1 to T i , adding new node

(i , t i
new) to N T , and adding for every arc ((i , t i

k)(j, t̄)) in
DT , a new arc ((i , t i

new), (j, t̄)) toAT , the longest-feasible-arc
property will be restored by
(1) replacing every arc ((j, t′), (i , t i

k)) with t′+ τ ji > t i
new

with arc ((j, t′), (i , t i
new)), and

(2) finding, for every new arc, ((i , t i
new), (j, t̄)), the node,

(i , t′), with largest t′, such that t̄ < t′ 6 t i
new + τi j and, if

such a node exists, replacing arc ((i , t i
new), (j, t̄)) with arc

((i , t i
new), (j, t′)).

Proof. The only arcs in DT that may violate the
longest-feasible-arc property after the introduction of
the new node (i , t i

new) are those with head (i , t i
k). These

arcs are replaced if needed. The newly added arcs may
also violate the longest-feasible-arc property but are
replaced if needed. Q.E.D.

When Algorithm 4, Refine, is applied to a partially
time-expanded network with the early arrival prop-
erty, Lemma 3 ensures that the resulting partially time-
expanded network will also have the early arrival
property. When Algorithm 5, Restore, is applied to
a partially time-expanded network with the early

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
1312 Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS

arrival property, Lemma 2 guarantees the property
is maintained. Lemma 4 ensures both steps preserve
the longest-feasible-arc property. Thus Algorithm 3,
Lengthen-arc, preserves both the early arrival and
longest-feasible-arc properties.
Algorithm 3 (Lengthen-arc((i , t), (j, t′)))
Require: Arc ((i , t), (j, t′)) ∈AT

1: Refine(j, t + τi j)
2: Restore(j, t + τi j).

Algorithm 4 (Refine(i , t i
new))

Require: Node i ∈ N ; time point t i
new ∈ T i

with t i
k < t i

new < t i
k+1

1: Add node (i , t i
new) to N T ;

2: Delete arc ((i , t i
k), (i , t i

k+1)) from AT ; add
arcs ((i , t i

k), (i , t i
new)) and ((i , t i

new), (i , t i
k+1)) to AT

3: for ((i , t i
k), (j, t)) ∈AT do

4: Add arc ((i , t i
new), (j, t)) to AT

5: end for.
Algorithm 5 (Restore(i , t i

new))
Require: Node i ∈ N ; time point t i

new ∈ T i
with t i

k < t i
new < t i

k+1
1: for all ((i , t i

k), (j, t)) ∈AT do
2: Set t′ � arg max{s ∈ T j | s 6 t i

new + τi j}.
3: if t′ , t then
4: Delete arc ((i , t i

new), (j, t)) from AT ;
add arc ((i , t i

new), (j, t′)) to AT

5: end if
6: end for
7: for all ((j, t), (i , t i

k)) ∈AT such that t + τ ji > t i
new do

8: Delete arc ((j, t), (i , t i
k)) from AT ;

add arc ((j, t), (i , t i
new)) to AT

9: end for.
Observation 1. Because Lengthen-arc takes a timed
arc that is too short and replaces it with a timed arc that
has the correct length (i.e., the actual travel time), the
length of an arc is corrected at most once. This implies
that Solve-CTSNDP, with Lengthen-arc used in step 8,
will terminate in a finite number of iterations. In par-
ticular, the number of iterations is bounded above by
|T̂ | |A|, since this is an upper bound on the number of
timed arcs.
The reason for refining the partially time-expanded

network is that the solution (x(DT), y(DT)) to SND(DT)
cannot be converted to a solution to CTSNDP with
equal value. A solution (x(DT), y(DT)) specifies the
path each commodity k takes from its origin to its des-
tination as well as the consolidations of commodities
on arcs in the network, where a consolidation of com-
modities on an arc (i , j) ∈ A occurs when two or more
commodities travel on that arc at the same time (i.e.,
|K((i , t), (j, t′)) | > 2), where

K((i , t), (j, t′)) � {k ∈K | xk , t , t′

i j � 1}.
(Assuming ∑

k∈K((i , t), (j, t′)) qk 6 ui j , these commodities will
share the same resource (i.e., will be loaded into

the same trailer), and the fixed cost fi j is incurred
only once.)

Because constraints (5) ensure that the paths speci-
fied in the solution for the commodities are time fea-
sible with actual travel times, the solution cannot be
converted to a solution to CTSNDP with equal value
because the consolidations specified in the solution
cannot be realized when the actual travel times are
observed. This implies that there has to be a commod-
ity k ∈K that flows on an arc that is too short; i.e., there
has to be a commodity k and an arc ((i , t), (j, t′) with
t′ < t + τi j for which xkτ′

i j � 1. Next, we discuss how to
identify arcs that are too short.

4.3. Identifying Arcs to Lengthen
We formulate the problem of identifying arcs to
lengthen as an MIP. For each a ∈ AT , let Ja be the
set of all pairs of commodities dispatched on a in
the optimal solution to SND(DT); i.e., Ja � {(k1 , k2) ∈
Ka × Ka | k1 < k2}. Furthermore, let J̄ denote the set
of arcs a ∈AT on which more than one commodity
is dispatched; i.e., J̄ � {a ∈ AT : |Ka | > 2}. To formu-
late the MIP, for each commodity k ∈K, let Pk � {ik

1 �

ok , ik
2 , i

k
3 , . . . , i

k
p � dk} represent the path that commod-

ity k follows from its source to its sink, in terms of the
nodes it visits along the way, in the optimal solution to
SND(DT), and for each arc (i j , i j+1) ∈ Pk , let τ̄k

i j i j+1
repre-

sent the travel timemodeled inDT for that arc. Then, for
each k ∈K and each node ik

j in path Pk , define variables
γk

i j
> 0 to represent the dispatch time of commodity k at

node ik
j , and for each a ∈AT and each k ∈K, define two

sets of variables: θk
i j i j+1

to represent the travel time of arc
(i j , i j+1) when taken by commodity k and σk

i1 i j+1
to rep-

resent whether the arc is allowed to be too short when
taken by commodity k. With these variables, we define
the following MIP to determine the fewest number of
arcs that must be too short for the consolidations that
occur in a solution to SND(DT) to be realized:

Z � min
∑
k∈K

|Pk |−1∑
j�1

σk
i j i j+1

θk
i j i j+1
> τi j i j+1

(1− σk
i j i j+1
), (6)

γk
i j
+ θk

i j i j+1
6 γk

i j+1
, ∀ k ∈K, j � 1, . . . , |Pk | − 1, (7)

ek 6 γ
k
ok
, ∀ k ∈K, (8)

γk
|Pk |−1 + θi |Pk |−1dk

6 lk , ∀ k ∈K, (9)

γk1
i � γk2

i , ∀ (k1 , k2) ∈ J((i , t), (j, t′)) ,
∀ ((i , t), (j, t′)) ∈ J̄ , (10)

γk
i j
> 0, ∀ k ∈K, j � 1, . . . , |Pk |, (11)

θk
i j i j+1
> τ̄k

i j i j+1
, σk

i j i j+1
∈ {0, 1},

∀ k ∈K, j � 1, . . . , |Pk | − 1. (12)

The objective is to minimize the number of arcs that
are assigned a travel time shorter than the actual travel

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS 1313

time. Constraints (6) count the number of arcs that are
assigned a travel time shorter than the actual. Con-
straints (7) ensure the dispatch times are in accor-
dance with the assigned travel times. Constraints (8)
and (9) ensure that the dispatch times prescribed for a
commodity enable it to depart from its origin after it
becomes available and arrive at its destination before it
is due. Constraints (10) ensure that all consolidations
seen in the solution to SND(DT) are maintained.
We note that when the optimal value to this MIP

is zero, the dispatch times γk
i show how to convert

the solution to SND(DT) to a solution to CTSNDP
of equal cost and Solve-CTSNDP can terminate. Con-
versely, when the optimal value is greater than zero,
we choose to lengthen arcs (i j , i j+1) such that σk

i j i j+1
� 1

for some k. We also note that we can speed up the MIP
(without invalidating it) by fixing to 0 variables σk

i j i j+1

associated with arcs in the solution to SND(DT) that
already have the correct length (i.e., are not “short”).

4.4. Deriving a Solution to CTSNDP from a
Solution to SND(DT)

When a solution to SND(DT) cannot be converted to a
solution to CTSNDP of equal cost, we can still use it
to construct a feasible solution of greater cost. Similar
to the integer program above, we seek to find dispatch
times for every commodity k at every node in Pk such
that (1) the commodity’s availability time and due time
are respected, and (2) commodities that are dispatched
together in the optimal solution to SND(DT) are still
dispatched together as much as possible (so that the
same consolidations are realized). However, unlike the
integer program above, we now ensure that the dis-
patch times respect the actual travel times of the arcs.
To determine these dispatch times, we solve a linear

program that is similar to the integer program above.
We again use the variables γk

i j
, but now, for each pair

of commodities (k1 , k2) ∈ J((i , t), (j, t′)), we define a variable
δk1k2

i jt > 0 to capture any difference in dispatch time of
the two commodities on arc (i , j). With these variables
we then solve the following linear program (LP):

Z�min
∑

((i , t), (j, t′))∈J̄

∑
(k1 , k2)∈ J((i , t), (j, t′))

δk1k2
i jt

γk
i j
+ τi j i j+1

6 γk
i j+1
, ∀ k ∈K, j �1, . . . , |Pk | −1, (13)

ek 6 γ
k
ok
, ∀ k ∈K, (14)

γi |Pk |−1
+ τi |Pk |−1dk

6 lk , ∀ k ∈K, (15)

δk1k2
i jt > γ

k1
i −γ

k2
i ,

∀ (k1 , k2) ∈ J((i , t), (j, t′)) , ∀ ((i , t), (j, t′)) ∈ J̄ , (16)
δk1k2

i jt > γ
k2
i −γ

k1
i ,

∀ (k1 , k2) ∈ J((i , t), (j, t′)) , ∀ ((i , t), (j, t′)) ∈ J̄ , (17)
γk

i j
> 0, ∀ k ∈K, j �1, . . . , |Pk |. (18)

Because the optimal solution to SND(DT) satisfies
constraints (5), there will always be a feasible solution
to the LP. The only reason the consolidations seen in
the solution to SND(DT) cannot be seen in a feasible
solution to the CTSNDP is if a commodity participating
in a consolidation travels on a path that contains an arc
that is too short.

Note that neither the MIP or LP presented above
require that the consolidations take place at the times
“suggested” by the solution to SND(DT). It only stipu-
lates that the commodities have to follow the same path
and that the consolidations that occurred are repro-
duced (as much as possible). However, the dispatch
times γk

i prescribed by the solution to the LP represent
a feasible solution to CTSNDP. Let the value of this
solution be z(P-CTSNDP). Thus, at each iteration of the
algorithm, we can calculate an optimality gap with the
following formula:

(z(P-CTSNDP) − z(DT))/z(P-CTSNDP). (19)

This also allows us to specify an optimality tolerance as
a stopping condition when executing Solve-CTSNDP.

4.5. Comparison with the Time Bucket Formulation
for TSPTW (Dash et al. 2012)

We finish this section by more closely considering the
branch-and-cut algorithm of Dash et al. (2012) for the
TSPTW, because it also employs dynamic discretiza-
tion discovery ideas. Dash et al. (2012) present a for-
mulation of the TSPTW that is based on partitioning
the time windows into subwindows or buckets. The
strength of the LP relaxation of the time bucket for-
mulation depends on the partition of the time win-
dows. In general, having more buckets results not only
in stronger LP relaxations but also in larger LP relax-
ations. To develop an efficient branch-and-cut algo-
rithm, it is therefore important to strike the right bal-
ance between the strength of the LP relaxation and
the time it takes to solve the LP relaxation. To obtain
a “good” partition of the time windows, Dash et al.
(2012) employ an iterative linear programming-based
partition refinement scheme; the scheme dynamically
discovers an appropriate partition (or discretization)
of the time windows. To enhance the iterative refine-
ment scheme, a bucket graph is constructed in which
arcs ((i , bi), (j, b j)) indicate that it is possible to reach
bucket b j at node j from bucket bi at node i, and bucket
preprocessing techniques are employed. This bucket
graph can equivalently be viewed as a partially time-
expanded network satisfying Properties 1–4. (A fully
time-expanded network would correspond to partition
of the time windows in subwindows of length 1.) Thus,
Dash et al. (2012) also manipulate a partially time-
expanded network.

However, there are critical differences between their
work and ours, in terms of the problems studied

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
1314 Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS

and the solution approaches developed. Regarding
problems studied, we note that (1) in the TSPTW it
is possible to restrict the searching for solutions to
those without unforced waiting time, whereas in the
CTSNDP waiting is often critical to achieve consoli-
dations; and (2) in the CTSNDP it is trivial to find
feasible solutions, whereas finding feasible solutions
for the TSPTW is NP-hard (Savelsbergh 1986). Regard-
ing solution approaches, the major differences are that
(1) Dash et al. (2012) employ dynamic discretization
discovery as a preprocessing scheme (i.e., once a par-
tition has been established, it is never changed during
the branch-and-cut search), whereas we continue to
refine the discretization until the solution to SND(DT)
can be converted to an optimal solution to CTSNDP;
(2) Dash et al. (2012) use information from the solu-
tion to an LP to heuristically refine the set of time
points, whereas we use information from the solution
to an integer program to carefully refine the set of time
points to guarantee convergence to an optimal solu-
tion to CTSNDP; and (3) we focus much more strongly
on keeping the number of time points in the partially
time-expanded network to a minimum.

5. A Computational Study
The goal of the computational study presented in this
section is to demonstrate the effectiveness and effi-
ciency of the (straightforward implementation of the)
proposed iterative refinement algorithm for solving
CTSNDP and to gain a better understanding of the
factors that contribute to its performance. We first
describe the instances used in the computational study
(Section 5.1), then we illustrate some of the challenges
associated with discretizing time (Section 5.2), and
then we present the results of a series of experiments
that demonstrate the efficacy of the proposed algo-
rithm (Section 5.3).
To be able to assess the performance of the proposed

algorithm on an instance, we also solve the instance
using the formulation with full-time discretization. We
will refer to this as using full discretization, or FD.
(We note that the same preprocessing techniques are
used when using full discretization as when solving
SND(DT)). Abusing terminology, we will sometimes
use FD to refer to the integer program it solves.

5.1. Instances
We derive the instances used in our computational
study from the C and C+ instances described in detail
in Crainic et al. (2001). These instances have been
used to benchmark the performance of many algo-
rithms for the capacitated fixed charge network design
problem (Ghamlouch et al. 2003, 2004; Crainic et al.
2004; Katayama et al. 2009; Hewitt et al. 2010; Yaghini
et al. 2012; Hewitt et al. 2013). The instances vary with
respect to the number of nodes (20, 30), arcs (230, 300,
520, 700), commodities (40, 100, 200, and 400), whether

the variable costs, ci j , outweigh the fixed costs, fi j , and
whether the arcs are loosely or tightly capacitated. The
results we present next are based on the 24 instances
with 100, 200, or 400 commodities. The other, smaller
instances are solved nearly instantaneously and, thus,
do not yield insights into the performance of our algo-
rithm. We provide a detailed list of these instances in
Table 1. We refer to these instances as “untimed” as
they do not have any time attributes; e.g., there are no
travel times associated with arcs and there are no avail-
able and due times associated with commodities.

We “timed” these instances using the following
scheme. First, for a given parameter ν, we set the travel
time in minutes, τi j , of arc (i , j) to be proportional to its
fixed charge. Specifically, we set τi j � ν fi j ∀ (i , j) ∈A. We
calculated the value ν based on the premise that fi j rep-
resents the transportation cost for a carrier that spends
$0.55 cents per mile and their trucks travel at 60 miles
per hour.

When commodities become available andwhen they
are due partially dictates whether they can consoli-
date. To be able to measure the degree to which these
parameters impact consolidation, we generate for each
untimed instance with associated arc travel times mul-
tiple instances with varying values for commodity
available and due times. More specifically, we first cal-
culate for each commodity k ∈ K the length of the
shortest path from ok to dk with respect to the travel

Table 1. “Flat” Instances from Crainic et al. (2001) Used
in Study

Fixed (F) or Tight (T) or
variable (V) loosely (L)

Instance |N | |A| |K | cost capacitated

c37 20 230 200 V L
c38 20 230 200 F L
c39 20 230 200 V T
c40 20 230 200 F T
c45 20 300 200 V L
c46 20 300 200 F L
c47 20 300 200 V T
c48 20 300 200 F T
c49 30 520 100 V L
c50 30 520 100 F L
c51 30 520 100 V T
c52 30 520 100 F T
c53 30 520 400 V L
c54 30 520 400 F L
c55 30 520 400 V T
c56 30 520 400 F T
c57 30 700 100 V L
c58 30 700 100 F L
c59 30 700 100 V T
c60 30 700 100 F T
c61 30 700 400 V L
c62 30 700 400 F L
c63 30 700 400 V T
c64 30 700 400 F T

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS 1315

times τi j . We call this length Lk and the average of
these |K | lengthsL.We then create three normal distri-
butions fromwhichwe draw the available time for each
commodity, all of which are defined by a mean, µe ,
of L minutes but vary with respect to their standard
deviation. Specifically, we consider three values for the
standard deviation, σe : 1

3L ,
1
6L , and

1
9L. Given com-

modity k’s available time, ek , at its origin, it can arrive
at its destination no sooner than ek +Lk . Next, we intro-
duce for each commodity k ∈K a time flexibility, fk > 0,
and set its due time, lk , to ek +Lk + fk . Similar to deter-
mining the available times, we create two normal dis-
tributions from which we draw these time flexibilities.
The first has a mean, µ f , of 1

2L, and the second has
µ f �

1
4L. Both distributions have a standard deviation,

σ f of 1
6µ f .

In summary, there are three normal distributions
from which we draw commodity available times and
two normal distributions from which we draw com-
modity time flexibility. As such, we have six sets of
instances, one for each combination of distributions,
and randomly generate three instances for each set.
When we randomly sample from one of the distribu-
tions, we repeatedly draw from the distribution until
we generate a value that falls within three standard
deviations of the mean of the distribution.

Therefore, we have a total of 24×6×3�432 instances.
Finally, we consider five discretization parameters, ∆:
60 minutes, 30 minutes, 15 minutes, 5 minutes, and 1
minute. We summarize the parameter values used to
generate the instances used in our computational study
in Table 2.

5.2. The Impact of Discretizing Time
As mentioned in the introduction, the granularity of
the time discretization has an impact on the accuracy
of a formulation as well as its size.
With regard to the size of the formulation, we report

in Figure 4 the growth in the full discretization integer
program, in terms of the number of variables and the
number of constraints, as the granularity is refined (i.e.,
when ∆ is changed from 60 to 30, from 60 to 15, from
60 to 5, and from 60 to 1). (We report averages over all
instances.) We see that the growth is substantial. Refin-
ing the granularity from a 60-minute discretization to
a 1-minute discretization results in a factor 15 increase
in the size of the integer program.

Table 2. Time-Oriented Characteristics

Normal distribution µ σ

For generating ek L 1
3L ,

1
6L, and 1

9L

For generating fk
1
2L ,

1
4L

1
6µ

∆ 60 min, 30 min, 15 min, 5 min, 1 min

Figure 4. Growth in FD When the Discretization ∆ Is
Changed from 60 to a Smaller Value

16

14

12

10

8

6

4

2

0

G
ro

w
th

 in
 IP

 o
ve

r
60

 m
in

ut
e

di
sc

re
tiz

at
io

n

30 min 15 min 5 min 1 min

Constraintsyij
tt variables xij

ktt variables

With regard to the accuracy, consider the time fea-
sibility of a path p in the flat network. A path p in
the flat network is time feasible if ∑

(i , j)∈p τi j 6 lk − ek .
However, for discretization ∆, the travel time of an arc
(i , j)will be modeled as ∆dτi j/∆e, which can be strictly
greater than τi j ; the available time of a commodity
k will be modeled as ∆dek/∆e, which can be strictly
greater than ek ; and the due time of a commodity k will
be modeled as ∆blk/∆c, which can be strictly smaller
than lk . As a result, paths that are time feasible when
considering the true travel times and the true available
and due time may be rendered infeasible for a dis-
cretization∆. Furthermore, if all time-feasible paths for
some commodity k in an instance are rendered infea-
sible for a discretization ∆, then the instance itself will
become infeasible. That this is a relevant and important
issue is shown in Figure 5, where we display the per-
centage of the 432 instances that become infeasible as a
result of discretization for different choices of∆. We see
that for ∆� 60, over 40% of the instances become infea-
sible (when they are in fact feasible for a one-minute
discretization).

Figures 4 and 5 highlight the fundamental issue
with modeling time-indexed decisions; while finer

Figure 5. The Percentage of Instances That Become Infeasible
Because of Discretization for Different Choices of∆

45

40

35

30

25

20

15

10

5

0

In
fe

as
ib

le
 in

st
an

ce
s

(%
)

60 min 30 min 15 min 5 min 1 min

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
1316 Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS

discretizations of time lead tomore accuratemodels, an
enumerative approach to choosing timepoints tomodel
can lead to significantly larger optimization problems.

5.3. Performance of Solve-CTSNDP
We conducted a set of a computational experiments to
assess the performance of our implementation of the
proposed dynamic discretization discovery algorithm
for solving CTSNDP using the instances that were not
rendered infeasible by discretization (recall Figure 5 in
the previous subsection). In all experiments, we gave
FD and Solve-CTSNDP the same stopping criteria: a
proven optimality gap of less than or equal to 1%,
where the optimality gap is calculated using (19), or
a maximum run time of two hours. Note that when
Solve-CTSNDP stops because the feasible solution to
the relaxation, SND(DT), can be converted to a feasi-
ble solution to CTSNDP, it terminates with a provably
optimal solution. All experiments were run on a cluster
of computers, and each job was allowed to use a maxi-
mum of 16 GB of memory. Experiments were run on a
cluster of nodes containing 32 cores each, with speeds
ranging from 2.3 to 2.8 GHz. Each node has 256 GB
of RAM.
To compare the performance of FD and Solve-

CTSNDP, we graph averages over instances with the
same discretization parameter ∆ of the time to termi-
nation (see Figure 6), the optimality gap at termina-
tion (see Figure 7), and the percentage of instances
solved (see Figure 8). We note that Solve-CTSNDP
never exceeds the 16 GB memory limit, whereas FD
does so for 167 of the 432 (nearly 39%) instances with
∆ � 1 (and never for the other discretizations). There-
fore, we do not display results for ∆ � 1 in Figures 6
and 7. Instead, for the instances with ∆ � 1, we report
in Table 3 the performance of both methods separately
for the instances where FD does not exceed the 16 GB
memory limit (FD 6 16 GB) and the instances where
FD does exceed the 16 GB memory limit (FD > 16 GB).

We see that the performance of Solve-CTSNDP is
comparable to that of FD on instances with coarse dis-
cretizations (60 and 30 minutes) but clearly outper-
forms FD on fine discretizations (15 minutes, 5 min-
utes, and 1 minute), where it requires less time to solve

Figure 6. Time to Termination for Different ∆
2,400
2,200
2,000
1,800
1,600
1,400
1,200
1,000

800
600
400
200

0
60 min 30 min 15 min 5 min

T
im

e
to

 te
rm

in
at

io
n

FD Solve-CTSNDP

Figure 7. Optimality Gap at Termination for Different ∆

6.00

5.00

4.00

3.00

2.00

1.00

0

G
ap

 a
t t

er
m

in
at

io
n

(%
)

FD Solve-CTSNDP

60 min 30 min 15 min 5 min

Table 3. Performance When ∆� 1 Minute

Instances Method Time (%) Opt. gap (%) Solved (%)

FD 6 16 GB FD 3,097.832 3.85 62.26
Solve-CTSNDP 417.04 0.78 98.87

FD > 16 GB Solve-CTSNDP 3,106.49 1.33 67.66

more instances and when it cannot solve an instance
yields a smaller optimality gap. Thus, as expected, the
performance of FD significantly degrades as the dis-
cretization becomes finer, but, as anticipated, Solve-
CTSNDP remains effective. We complement the aver-
ages reported in the previous figureswith distributions
(in deciles) for each discretization of the time to ter-
mination (see Figure 9) and the optimality gap at ter-
mination (see Figure 10) for Solve-CTSNDP. In these
figures, we see that the distribution for the time to
termination is positively skewed, with outliers pulling
the average up. For example, for all discretizations the
60th percentile for the time to termination is less than
seven minutes (and significantly less than the average).
We note that for all discretizations the 80th percentile
of optimality gaps is within our optimality tolerance
of 1%.

Figure 8. Fraction of Instances Solved Within the Memory
and Time Limits for Different ∆

100

90

80

70

60

50

40

30

20

10

0

S
ol

ve
d

(%
)

60 min 30 min 15 min 5 min 1 min

FD Solve-CTSNDP

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS 1317

To better understand why Solve-CTSNDP outper-
forms FD, we first compare |N FD |, the cardinality of
the node set of the fully time-expanded network that
forms the basis of the integer program solved by FD,
and |N T |, the node set of the partially time-expanded
network that forms the basis of the last integer pro-
gram solved by Solve-CTSNDP. In Figure 11, we show
for the instances with a given discretization param-
eter ∆ and for a given ratio r (0 < r < 1), the frac-
tion of instances with |N T |/|N FD | 6 r. We see that
Solve-CTSNDP works with significantly smaller time-
expanded networks while searching for a provably
optimal solution to CTSNDP than FD, especially for
instances with ∆ � 1, where |N T |/|N FD | 6 0.04 for all
instances.
Next, in Figure 12, we compare the size of the inte-

ger programs solved by FD and the size of the last
integer programs solved by Solve-CTSNDP (i.e., of the
integer program associated with the final SND(DT)).
Specifically, we show for the instances with a given
discretization parameter ∆ the averages of the follow-
ing ratios: the number of y t t̄

i j variables in the last inte-
ger program solved by Solve-CTSNDP and the num-
ber of y t t̄

i j variables in the integer program solved by
FD, the number of xkt t̄

i j variables in the last integer
program solved by Solve-CTSNDP and the number
of xkt t̄

i j variables in the integer program solved by FD,
and the number of constraints in the last integer pro-
gram solved by Solve-CTSNDP and the number of
constraints in the integer program solved by FD. We
see that the last integer programs solved by Solve-
CTSNDP are significantly smaller than those solved
by FD. Furthermore, as expected, we see that the finer
the discretization, the smaller the relative size of the
integer program associated with the final SND(DT)
solved by Solve-CTSNDP.

Figure 11. Relative Time-Expanded Network Size of the Final SND(DT)
100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0

%

0.
01

0.
03

0.
05

0.
07

0.
08

0.
10

0.
12

0.
14

0.
15

0.
17

0.
19

0.
21

0.
23

0.
25

0.
27

0.
29

0.
31

0.
33

0.
35

0.
37

0.
39

0.
41

0.
42

0.
44

0.
46

0.
48

0.
50

0.
52

0.
54

0.
56

0.
58

0.
61

0.
63

0.
67

0.
69

60 min
30 min
15 min
5 min
1 min

Figure 9. Time to Termination

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Decile

T
im

e
to

 te
rm

in
at

io
n

60 min
30 min
15 min
5 min
1 min

Figure 10. Optimality Gap at Termination

O
pt

im
al

ity
 g

ap
 a

t t
er

m
in

at
io

n
(%

) 14

12

10

8

6

4

2

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Decile

60 min
30 min
15 min
5 min
1 min

In Figure 11, we saw that the cardinality of the node
set of the partially time-expanded network of the last
SND(DT)) solved by Solve-CTSNDP is much smaller
than the cardinality of the node set of the fully time-
expanded network for the same instance. Next, we
explore the growth of the partially time-expanded net-
works during the execution of Solve-CTSNDP. More

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
1318 Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS

Figure 12. Relative Integer Programming Size Associated
with the Final SND(DT)

Constraintsyij
tt variables xij

ktt variables

45

40

35

30

25

20

15

10

5

0

%
 in

 F
D

60 min 30 min 15 min 5 min 1 min

Figure 13. Relative Time-Expanded Network Size by
Iteration for Instances with |N | � 20, |A| � 200, |K | � 200,
σe �

1
9L, and µ f �

1
2L

18

16

14

12

10

8

6

4

2

0

%
 n

od
es

 in
 F

D

0 5 10 15 20 25 30

Iteration

60 min
30 min
15 min
5 min
1 min

specifically, in Figure 13, we report for the instances
with a given discretization parameter ∆ the averages of
|N T |/|N FD | by iteration of Solve-CTSNDP for a specific
flat network and set of timing parameter values (this
set of instances was chosen because Solve-CTSNDP
struggled the most with them, solving the smallest
fraction of instances).
We see that the size of the partially time-expanded

networks created and refined by Solve-CTSNDP

Figure 14. Primal and Dual Gaps by Iteration
8

6

4

2

0

–2

–4

–6

–8

1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25430

Iteration

G
ap

 (
%

)

60 min primal 30 min primal 15 min primal 5 min primal 1 min primal
60 min dual 30 min dual 15 min dual 5 min dual 1 min dual

remains fairly stable during the execution of algorithm
(even for instances with discretization ∆ � 60, the rela-
tive size only increases from about 10% to about 18%).

The results of the computational experiments dis-
cussed above clearly demonstrate Solve-CTSNDP’s
superiority over FD. We conclude that Solve-CTSNDP
outperforms FD because it starts with a significantly
smaller time-expanded network than FD and refines it
in such a way that the time-expanded network grows
only modestly. As a result, the integer programs solved
by Solve-CTSNDP are significantly smaller than those
solved by FD.

Next, we analyze the changes in the lower and upper
bounds during the execution of Solve-CTSNDP. We
note that because the number of iterations required to
solve an instance varies across the instances, the num-
ber of instances for which we have a lower and upper
bound at the kth iteration is typically greater than the
number of instances for which we have a lower and
upper bound at the k + 1th iteration, and this has to
be kept in mind when interpreting the average values
reported for an iteration.

In Figure 14, we report averages over all instances,
but by the discretization parameter and iteration, of
gaps for both these measures. Specifically, we report
the gap in value between the primal solution produced
by Solve-CTSNDP at an iteration and the primal solu-
tion produced at termination (labeled ∆ min primal).
Similarly, we report the gap in value between the dual
bound produced by Solve-CTSNDP at an iteration and
the dual bound produced at termination (labeled ∆
min dual). (We note again that because not all execu-
tions of Solve-CTSNDP require the same number of
iterations to terminate, for each iteration, we are report-
ing averages over the instances that needed at least that
many iterations to terminate.) First, we observe that
both gaps converge fairly quickly, with the dual bound
converging more quickly than the objective function
value of the primal solution. Importantly, we note that
the performance of Solve-CTSNDP with respect to

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS 1319

both the quality of the primal solution and the strength
of the dual bound produced at an iteration is consistent
across discretizations. Coupled with the results dis-
cussed previously, we conclude that Solve-CTSNDP is
robust with respect to the discretization parameter, ∆.

5.4. Potential of Solve-CTSNDP in Practice
As a final test of the effectiveness of the algorithm, we
created five instances using data from a large less-than-
truckload freight transportation carrier in the United
States. While this carrier operates in nearly all states,
we limited our instances to activities in the northwest
region of the United States. We construct the instances
using five days worth of freight. When optimizing how
freight moves within this region, we include freight
that originates outside the region but is destined for a
terminal inside the region and freight that originates
inside the region but is destined for a terminal outside
the region. This is done by exploiting knowledge of
the carrier’s planned path for routing the freight. As
an example, consider freight that originates on day 1
in Miami, Florida, and is destined for Seattle, Wash-
ington on day 5. The carrier’s planned path for that
freight enters the Northwest in Boise, Idaho on day 3.
Wemodel that freight as freight that originates in Boise
on day 3 and is due in Seattle on day 5.
Because of the operational practices of this particular

carrier, these instances differ in several ways from those
used in our earlier computational experiments. Specifi-
cally, it is assumed that on the day that freight becomes
available, it becomes available at 7 p.m. at its origin
terminal (as that is when the carrier expects trucks
to return from pickup and delivery routes). Thus, by
considering a five-day planning horizon, freight only
originates at five different time points. Similarly, it is
assumed that on the day freight is due at the customer
destination, it must be at the associated terminal at
8 a.m. (as that iswhen the carrier needs it to be ready for
the pickup and delivery route). Finally, we note that the
carrier quotes service (how long freight will take from
origin to destination) to customers in terms of days.
Thus, the time the carrier has to deliver freight also
has a discrete nature. It was determined that, based on
discussions with the carrier, 30 minutes is the finest
discretization that would yield plans that could be

Table 4. Performance of Solve-CTSNDP on Instances Derived from Data from a U.S. LTL Carrier

Solve-CTSNDP FD
Delivery Freight capacity
window Planning fraction Time to Optimality Time to Optimality Primal

States |N | |A| |K | (avg.) horizon (avg.) termination (sec.) gap (%) termination gap (%) gap (%)

ID, MT, OR, WA 10 54 224 34.22 240 1.25 30 0.92 213 0.94 0.26
CO, ID, MT, OR, WA 14 81 341 49.07 240 1.05 7,200 1.68 7,200 3.63 −1.29
CO, ID, MT, OR, WA, NV 16 109 469 52.11 240 0.94 7,200 2.74 7,200 25.28 −28.26
CO, ID, MT, OR, WA, UT 15 104 458 50.28 240 1.00 7,200 1.45 7,200 19.71 −20.64
ID, MT, OR, WA, NV, UT 13 97 429 43.88 240 1.05 7,200 3.00 7,200 23.78 −25.18

implemented in practice. We ran both Solve-CTSNDP
and FD for two hours on each instance and report the
results of their execution, aswell as data regarding each
instance, in Table 4. We calculate “Delivery window
(avg.)” as (∑k∈K lk − ek)/|K |, while “Planning horizon”
is calculated as maxk(lk − ek). Finally, “Freight capacity
fraction (avg.)” is calculated as∑

k∈K qk

|K |

/∑
(i , j)∈A ui j

|A| .

We report gaps in terms of objective function value of
the primal solutions produced by eachmethod.We cal-
culate “Primal gap” as (zCTSNDP − zFD)/zCTSNDP, where
zX represents the objective function value of the solu-
tion produced by method X.

We see that Solve-CTSNDP easily solves the instance
with only four states but is unable to solve the larger
instances (to optimality). However, it is able to pro-
duce a primal solution and a dual bound with a rel-
atively small (provable) optimality gap. We also note
that for the larger instances, Solve-CTSNDP reports
an optimality gap of between 3% and 4% after a little
over an hour, suggesting the algorithm may be used
as a heuristic. Similarly, FD is only able to solve the
smallest instance. However, FD produces amuch larger
provable optimality gap than Solve-CTSNDP after two
hours on the larger instances, and, looking at the “pri-
mal gap,”we see that Solve-CTSNDP is able to produce
higher-quality solutions than FD.

Regarding our previous experiments, we note that
for the instances generated with ∆ � 30, the average
"delivery window” is 54.65, which is slightly larger
than the average for the real-world-inspired instances.
However, the planning horizon of the real-world-
inspired instances (i.e., 240) is much longer than the
planning horizon of the instances used in the previ-
ous experiments (i.e., 122 periods). Finally, we note
that the commodities in the instances used in the
previous experiments are, relatively speaking, much
smaller, as the average “freight capacity fraction” for
those instances is 0.16. We attribute the difficulty that

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
1320 Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS

Solve-CTSNDP and FD have in solving the two larger
real-world-inspired instances to the large number of
commodities and the length of the planning horizon,
as both have a direct impact on the size of the integer
program solved at each iteration.

6. Conclusions and Future Work
We have presented an algorithm for solving service
network design problems that uses time-expanded net-
works but that avoids having to introduce approxima-
tions (and thus uncertainty about the quality of the
solution) to keep the size of the time-expanded net-
work manageable.
Because time-expanded networks are commonly

used in the solution of many transportation problems,
we hope and expect that many of the fundamental
ideas underlying our approach can be applied in other
contexts as well.

Our computational study has demonstrated that
the current implementation of Solve-CTSNDP is quite
effective. However, there are many enhancements that
will increase its efficiency.Wemention only a few. First,
it is unnecessary to solve SND(DT), which is the most
time-consuming step in the algorithm, to optimality
at each iteration. In the initial iterations, it may suf-
fice to only solve the linear programming relaxation or
to solve the problem to within a proven percentage of
optimality. Second, if SND(DT) does not change much
from one iteration to the next, it may be possible to
construct a high-quality initial solution to speed up the
solution time.
The ability to solve very large instances of a service

network design problem also opens up the possibil-
ity to study new and innovative time-focused service
network design models. For example, a carrier may be
interested in understanding the degree to which alter-
ing the available and/or due times of a commodity
impacts the costs. Such decisions can easily be incor-
porated in a service network design model but will
increase the size of instance substantially. However, by
using an iterative refinement algorithm based on par-
tially time-expanded networks, the increase in sizemay
be overcome.

Finally, we note that many real-world service net-
work design problems are computationally intractable
because of their scale on two dimensions: (1) time
and (2) number of shipments. For the carrier that
inspired this work, modeling a week’s worth of actions
in its network on a time-space network based on a 30-
minute discretization of time would yield a network
with nearly 40,000 nodes and over 1.2 million arcs.
We believe that the algorithm presented in this paper
presents a significant step forward in terms of tackling
this explosion in size. However, the number of ship-
ments (which would map to commodities in a service
network design model) for the carrier over a five-day

span would exceed 60,000. Such a large number of
commodities would likely render the integer programs
solved by the algorithm presented in this paper com-
putationally intractable. As a result, in future work, we
intend to develop a similar algorithm for an explosion
in size along this dimension.

Acknowledgments
The authors thank two anonymous reviewers for their help-
ful comments and insights.

References
Andersen J, Christiansen M, Crainic TG, Grønhaug R (2011) Branch

and price for service network design with asset management
constraints. Transportation Sci. 45(1):33–49.

AndersonEJ,NashP (1987)Linear Programming in Infinite-Dimensional
Spaces: Theory and Applications (John Wiley & Sons, New York).

Anderson E, Nash P, Philpott A (1982) A class of continuous network
flow subproblems. Math. Oper. Res. 7(4):501–514.

Baumann N, Skutella M (2006) Solving evacuation problems effi-
ciently—Earliest arrival flows with multiple sources. Proc. 47th
Annual IEEE Sympos. Foundation Comp. Sci., FOCS ’06 (IEEE
Computer Society, Washington, DC), 399–410.

Burkard RE, Dlaska K, Klinz B (1993) The quickest flow problem.
Zeitschrift für Oper. Res. 37(1):31–58.

Crainic T (2000) Service network design in freight transportation.
Eur. J. Oper. Res. 122(2):272–288.

Crainic TG, Frangioni A, Gendron B (2001) Bundle-based relaxation
methods for multicommodity capacitated fixed charge network
design. Discrete Appl. Math. 112(1):73–99.

Crainic T, Gendron B, Hernu G (2004) A slope scaling/Lagrangean
perturbation heuristic with long-term memory for multicom-
modity capacitated fixed-charge network design. J. Heuristics
10(5):525–545.

Crainic TG, Hewitt M, Toulouse M, Vu DM (2016) Service net-
work design with resource constraints. Transportation Sci. 50(4):
1380–1393.

Dash S, Günlük O, Lodi A, Tramontani A (2012) A time bucket
formulation for the traveling salesman problem with time win-
dows. INFORMS J. Comput. 24(1):132–147.

Erera A, Hewitt M, Savelsbergh M, Zhang Y (2013) Improved load
plan design through integer programming based local search.
Transportation Sci. 47(3):412–427.

Fischer F, Helmberg C (2014) Dynamic graph generation for the
shortest path problem in time expanded networks. Math. Pro-
gramming 143(1):257–297.

Fleischer L, Skutella M (2003) Minimum cost flows over time with-
out intermediate storage. Proc. 14th Annual ACM-SIAM Sympos.
Discrete Algorithms, SODA ’03 (SIAM, Philadelphia), 66–75.

Fleischer L, Skutella M (2007) Quickest flows over time. SIAM J.
Comput. 36(6):1600–1630.

Ford LR, Fulkerson DR (1958) Constructing maximal dynamic flows
from static flows. Oper. Res. 6(3):419–433.

Ford LR, FulkersonDR (1962) Flows in Networks (PrincetonUniversity
Press, Princeton, NJ).

Gale D (1958) Transient flows in networks. Technical report, Defense
Technical Information Center, Fort Belvoir, VA.

Ghamlouch I, Crainic T, Gendreau M (2003) Cycle-based neighbor-
hoods for fixed charge capacitated multicommodity network
design. Oper. Res. 51(4):655–667.

Ghamlouch I, Crainic T, Gendreau M (2004) Path relinking, cycle-
based neighborhoods and capacitatedmulticommodity network
design. Ann. Oper. Res. 131(1):109–133.

Groß M, Skutella M (2012) Maximum multicommodity flows over
time without intermediate storage. Epstein L, Ferragina P, eds.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

Boland et al.: The Continuous-Time Service Network Design Problem
Operations Research, 2017, vol. 65, no. 5, pp. 1303–1321, ©2017 INFORMS 1321

Algorithms—ESA 2012: Proc. 20th Annual Eur. Sympos. (Springer,
Berlin), 539–550.

Groß M, Kappmeier JPW, Schmidt DR, Schmidt M (2012) Approx-
imating earliest arrival flows in arbitrary networks. Epstein L,
Ferragina P, eds. Algorithms—ESA 2012: Proc. 20th Annual Eur.
Sympos. (Springer, Berlin), 551–562.

Hall A, Hippler S, Skutella M (2007) Multicommodity flows over
time: Efficient algorithms and complexity. Theoret. Comput. Sci.
379(3):387–404.

HewittM, Nemhauser G, SavelsberghM (2010) Combining exact and
heuristic approaches for the capacitated fixed-charge network
flow problem. INFORMS J. Comput. 22(2):314–325.

Hewitt M, Nemhauser G, Savelsbergh MW (2013) Branch-and-
price guided search for integer programs with an application
to the multicommodity fixed-charge network flow problem.
INFORMS J. Comput. 25(2):302–316.

Hoppe B, Tardos É (1994) Polynomial time algorithms for some evac-
uation problems. Sleator DD, ed. Proc. Fifth Annual ACM-SIAM
Sympos. Discrete Algorithms, SODA ’94 (SIAM, Philadelphia),
433–441.

Hoppe B, Tardos É (2000) The quickest transshipment problem.Math.
Oper. Res. 25(1):36–62.

Jarrah A, Johnson E, Neubert L (2009) Large-scale, less-than-
truckload service network design. Oper. Res. 57(3):609–625.

Jarvis JJ, Ratliff HD (1982) Some equivalent objectives for dynamic
network flow problems. Management Sci. 28(1):106–109.

Katayama N, Chen M, Kubo M (2009) A capacity scaling heuristic
for the multicommodity capacitated network design problem.
J. Comput. Appl. Math. 232(1):90–101.

Kennington JL, Nicholson CD (2010) The uncapacitated time-space
fixed-charge network flow problem: an empirical investigation
of procedures for arc capacity assignment. INFORMS J. Comput.
22(2):326–337.

Klinz B, Woeginger GJ (2004) Minimum-cost dynamic flows: The
series-parallel case. Networks 43(3):153–162.

Megiddo N (1974) Optimal flows in networks with multiple sources
and sinks. Math. Programming 7(1):97–107.

Minieka E (1973) Maximal, lexicographic, and dynamic network
flows. Oper. Res. 21(2):517–527.

Powell WB, Jaillet P, Odoni A (1995) Stochastic and dynamic
networks and routing. Ball MO, Magnanti TL, Monma CL,
Nemhauser GL, eds. Handbooks in Operations Research and Man-
agement Science, Vol. 8 (Elsevier, Amsterdam), 141–295.

Savelsbergh M (1986) Local search for routing problems with time
windows. Ann. Oper. Res. 4(1):285–305.

Schulz JD (2014) 2014 state of logistics: Less-than-truckload’s
welcomed rebound. Logistics Management (July 1), http://www
.logisticsmgmt.com/article/state_of_logistics_less_than_truck
-loads_welcomed_rebound.

Skutella M (2009) An introduction to network flows over time. Cook
WJ, Lovász L, Vygen J, eds. Research Trends in Combinatorial Opti-
mization (Springer, Berlin), 451–482.

Tjandra SA (2003) Dynamic network optimization with applica-
tion to the evacuation problem. PhD thesis, Universitat Kaiser-
slautern, Kaiserslautern, Germany.

Topaloglu H, Powell WB (2006) Dynamic-programming approxima-
tions for stochastic time-staged integer multicommodity-flow
problems. INFORMS J. Comput. 18(1):31–42.

Wang X, Regan AC (2002) Local truckload pickup and delivery with
hard timewindow constraints. Transportation Res. Part B:Method-
ological 36(2):97–112.

Wang X, Regan AC (2009) On the convergence of a new time window
discretization method for the traveling salesman problem with
time window constraints. Comput. Indust. Engrg. 56(1):161–164.

Wieberneit N (2008) Service network design for freight transporta-
tion: A review. OR Spectrum 30(1):77–112.

Yaghini M, Rahbar M, Karimi M (2012) A hybrid simulated anneal-
ing and column generation approach for capacitated multicom-
modity network design. J. Oper. Res. Soc. 64(7):1010–1020.

Natashia Boland is a professor at the H. Milton Stewart
School of Industrial and Systems Engineering at Georgia
Institute of Technology. Her research focuses on integer pro-
gramming. She has over 20 years of experience in modeling,
theory, algorithms and applications. Her current research
interests include multiobjective integer programming, time
discretization in integer programming, and decomposition
methods in integer and stochastic integer programming.

Mike Hewitt is an associate professor at the Quinlan
School of Business, Loyola University Chicago. His research
interests include developing optimization methods for solv-
ing large-scale planning problems that arise in practice in
the freight and small package transportation industries; this
paper focuses on the temporal dimension of these problems.

Luke Marshall is a PhD student at the H. Milton Stewart
School of Industrial and Systems Engineering at Georgia
Institute of Technology. His PhD research focuses on dyna-
mic and continuous-time service network design.

Martin Savelsbergh is the James C. Edenfield Chair and
Professor at the H. Milton Stewart School of Industrial and
Systems Engineering at Georgia Institute of Technology. He
is an optimization and logistics specialist with over 25 years
of experience in mathematical modeling, optimization meth-
ods, algorithm design, logistics, supply chain management,
and transportation systems. His current research interests
includemultiobjective integer programming, time discretiza-
tion in integer programming, and last-mile logistics.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

18
.9

.6
1.

11
1]

 o
n

03
 M

ar
ch

 2
02

3,
 a

t 0
5:

03
 .

Fo
r

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
ri

gh
ts

 r
es

er
ve

d.

http://www.logisticsmgmt.com/article/state_of_logistics_less_than_truckloads_welcomed_rebound
http://www.logisticsmgmt.com/article/state_of_logistics_less_than_truckloads_welcomed_rebound
http://www.logisticsmgmt.com/article/state_of_logistics_less_than_truckloads_welcomed_rebound

	Introduction
	Literature Review
	Problem Description
	An Algorithm for Solving CTSNDP
	Creating an Initial Partially Time-Expanded Network
	Refining a Partially Time-Expanded Network
	Identifying Arcs to Lengthen
	Deriving a Solution to CTSNDP from a Solution to SND(\sCALD_{\sCALT})
	Comparison with the Time Bucket Formulation for TSPTW Dash2012

	A Computational Study
	Instances
	The Impact of Discretizing Time
	Performance of Solve-CTSNDP
	Potential of Solve-CTSNDP in Practice

	Conclusions and Future Work

