Skip to content

Latest commit

 

History

History
 
 

docs

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Generating the documentation

To generate the documentation, you first have to build it. Several packages are necessary to build the doc, you can install them with the following command, at the root of the code repository:

pip install -e ".[docs]"

Then you need to install our special tool that builds the documentation:

pip install git+https://github.com/huggingface/doc-builder

NOTE

You only need to generate the documentation to inspect it locally (if you're planning changes and want to check how they look like before committing for instance). You don't have to commit the built documentation.


Building the documentation

Once you have setup the doc-builder and additional packages, you can generate the documentation by typing th following command:

doc-builder build datasets docs/source/ --build_dir ~/tmp/test-build

You can adapt the --build_dir to set any temporary folder that you prefer. This command will create it and generate the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite Markdown editor.


NOTE

It's not possible to see locally how the final documentation will look like for now. Once you have opened a PR, you will see a bot add a comment to a link where the documentation with your changes lives.


Adding a new element to the navigation bar

Accepted files are Markdown (.md or .mdx).

Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting the filename without the extension in the _toctree.yml file.

Renaming section headers and moving sections

It helps to keep the old links working when renaming section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums and Social media and it'd be make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.

Therefore we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.

So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:

Sections that were moved:

[ <a href="#section-b">Section A</a><a id="section-a"></a> ]

and of course if you moved it to another file, then:

Sections that were moved:

[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]

Use the relative style to link to the new file so that the versioned docs continue to work.

For an example of a rich moved sections set please see the very end of the Trainer doc.

Writing Documentation - Specification

The huggingface/transformers documentation follows the Google documentation style for docstrings, although we can write them directly in Markdown.

Adding a new tutorial

Adding a new tutorial or section is done in two steps:

  • Add a new file under ./source. This file can either be ReStructuredText (.rst) or Markdown (.md).
  • Link that file in ./source/_toctree.yml on the correct toc-tree.

Make sure to put your new file under the proper section. It's unlikely to go in the first section (Get Started), so depending on the intended targets (beginners, more advanced users or researchers) it should go in section two, three or four.

Adding a new model

When adding a new model:

  • Create a file xxx.mdx or under ./source/model_doc (don't hesitate to copy an existing file as template).
  • Link that file in ./source/_toctree.yml.
  • Write a short overview of the model:
    • Overview with paper & authors
    • Paper abstract
    • Tips and tricks and how to use it best
  • Add the classes that should be linked in the model. This generally includes the configuration, the tokenizer, and every model of that class (the base model, alongside models with additional heads), both in PyTorch and TensorFlow. The order is generally:
    • Configuration,
    • Tokenizer
    • PyTorch base model
    • PyTorch head models
    • TensorFlow base model
    • TensorFlow head models
    • Flax base model
    • Flax head models

These classes should be added using our Markdown syntax. Usually as follows:

## XXXConfig

[[autodoc]] XXXConfig

This will include every public method of the configuration that is documented. If for some reason you wish for a method not to be displayed in the documentation, you can do so by specifying which methods should be in the docs:

## XXXTokenizer

[[autodoc]] XXXTokenizer
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - save_vocabulary

If you just want to add a method that is not documented (for instance magic method like __call__ are not documented byt default) you can put the list of methods to add in a list that contains all:

## XXXTokenizer

[[autodoc]] XXXTokenizer
    - all
    - __call__

Writing source documentation

Values that should be put in code should either be surrounded by backticks: `like so`. Note that argument names and objects like True, None or any strings should usually be put in code.

When mentioning a class, function or method, it is recommended to use our syntax for internal links so that our tool adds a link to its documentation with this syntax: [`XXXClass`] or [`function`]. This requires the class or function to be in the main package.

If you want to create a link to some internal class or function, you need to provide its path. For instance: [`file_utils.ModelOutput`]. This will be converted into a link with file_utils.ModelOutput in the description. To get rid of the path and only keep the name of the object you are linking to in the description, add a ~: [`~file_utils.ModelOutput`] will generate a link with ModelOutput in the description.

The same works for methods so you can either use [`XXXClass.method`] or [~`XXXClass.method`].

Defining arguments in a method

Arguments should be defined with the Args: (or Arguments: or Parameters:) prefix, followed by a line return and an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon and its description:

    Args:
        n_layers (`int`): The number of layers of the model.

If the description is too long to fit in one line, another indentation is necessary before writing the description after th argument.

Here's an example showcasing everything so far:

    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and
            [`~PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)

For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the following signature:

def my_function(x: str = None, a: float = 1):

then its documentation should look like this:

    Args:
        x (`str`, *optional*):
            This argument controls ...
        a (`float`, *optional*, defaults to 1):
            This argument is used to ...

Note that we always omit the "defaults to `None`" when None is the default for any argument. Also note that even if the first line describing your argument type and its default gets long, you can't break it on several lines. You can however write as many lines as you want in the indented description (see the example above with input_ids).

Writing a multi-line code block

Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:

```
# first line of code
# second line
# etc
```

We follow the doctest syntax for the examples to automatically test the results stay consistent with the library.

Writing a return block

The return block should be introduced with the Returns: prefix, followed by a line return and an indentation. The first line should be the type of the return, followed by a line return. No need to indent further for the elements building the return.

Here's an example for a single value return:

    Returns:
        `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.

Here's an example for tuple return, comprising several objects:

    Returns:
        `tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
        - ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
          Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        - **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
          Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

Adding an image

Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos and other non-text files. We prefer to leverage a hf.co hosted dataset like the ones hosted on hf-internal-testing in which to place these files and reference them by URL. We recommend putting them in the following dataset: huggingface/documentation-images. If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images to this dataset.

Styling the docstring

We have an automatic script running with the make style comment that will make sure that:

  • the docstrings fully take advantage of the line width
  • all code examples are formatted using black, like the code of the Transformers library

This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's recommended to commit your changes before running make style, so you can revert the changes done by that script easily.