Skip to content

Latest commit

 

History

History
175 lines (132 loc) · 4.29 KB

File metadata and controls

175 lines (132 loc) · 4.29 KB

中文文档

Description

You are given a doubly linked list which in addition to the next and previous pointers, it could have a child pointer, which may or may not point to a separate doubly linked list. These child lists may have one or more children of their own, and so on, to produce a multilevel data structure, as shown in the example below.

Flatten the list so that all the nodes appear in a single-level, doubly linked list. You are given the head of the first level of the list.

 

Example 1:

Input: head = [1,2,3,4,5,6,null,null,null,7,8,9,10,null,null,11,12]
Output: [1,2,3,7,8,11,12,9,10,4,5,6]
Explanation:

The multilevel linked list in the input is as follows:



After flattening the multilevel linked list it becomes:


Example 2:

Input: head = [1,2,null,3]
Output: [1,3,2]
Explanation:

The input multilevel linked list is as follows:

  1---2---NULL
  |
  3---NULL

Example 3:

Input: head = []
Output: []

 

How multilevel linked list is represented in test case:

We use the multilevel linked list from Example 1 above:

 1---2---3---4---5---6--NULL
         |
         7---8---9---10--NULL
             |
             11--12--NULL

The serialization of each level is as follows:

[1,2,3,4,5,6,null]
[7,8,9,10,null]
[11,12,null]

To serialize all levels together we will add nulls in each level to signify no node connects to the upper node of the previous level. The serialization becomes:

[1,2,3,4,5,6,null]
[null,null,7,8,9,10,null]
[null,11,12,null]

Merging the serialization of each level and removing trailing nulls we obtain:

[1,2,3,4,5,6,null,null,null,7,8,9,10,null,null,11,12]

 

Constraints:

  • The number of Nodes will not exceed 1000.
  • 1 <= Node.val <= 105

Solutions

Python3

"""
# Definition for a Node.
class Node:
    def __init__(self, val, prev, next, child):
        self.val = val
        self.prev = prev
        self.next = next
        self.child = child
"""

class Solution:
    def flatten(self, head: 'Node') -> 'Node':
        def preorder(pre, cur):
            if cur is None:
                return pre
            cur.prev = pre
            pre.next = cur

            t = cur.next
            tail = preorder(cur, cur.child)
            cur.child = None
            return preorder(tail, t)
            
        if head is None:
            return None
        dummy = Node(0, None, head, None)
        preorder(dummy, head)
        dummy.next.prev = None
        return dummy.next

Java

/*
// Definition for a Node.
class Node {
    public int val;
    public Node prev;
    public Node next;
    public Node child;
};
*/

class Solution {
    public Node flatten(Node head) {
        if (head == null) {
            return null;
        }
        Node dummy = new Node();
        dummy.next = head;
        preorder(dummy, head);
        dummy.next.prev = null;
        return dummy.next;
    }

    private Node preorder(Node pre, Node cur) {
        if (cur == null) {
            return pre;
        }
        cur.prev = pre;
        pre.next = cur;

        Node t = cur.next;
        Node tail = preorder(cur, cur.child);
        cur.child = null;
        return preorder(tail, t);
    }
}

...