Skip to content

Latest commit

 

History

History
 
 

0145.Binary Tree Postorder Traversal

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

English Version

题目描述

给定一个二叉树,返回它的 后序 遍历。

示例:

输入: [1,null,2,3]  
   1
    \
     2
    /
   3 

输出: [3,2,1]

进阶: 递归算法很简单,你可以通过迭代算法完成吗?

解法

1. 递归遍历

先递归左右子树,再访问根节点。

2. 栈实现非递归遍历

非递归的思路如下:

先序遍历的顺序是:头、左、右,如果我们改变左右孩子的顺序,就能将顺序变成:头、右、左。

我们先不打印头节点,而是存放到另一个收集栈 res 中,最后遍历结束,输出收集栈元素,即是后序遍历:左、右、头。收集栈是为了实现结果列表的逆序。我们也可以直接使用链表,每次插入元素时,放在头部,最后直接返回链表即可,无需进行逆序。

3. Morris 实现后序遍历

Morris 遍历无需使用栈,空间复杂度为 O(1)。核心思想是:

遍历二叉树节点,

  1. 若当前节点 root 的右子树为空,将当前节点值添加至结果列表 res 中,并将当前节点更新为 root.left
  2. 若当前节点 root 的右子树不为空,找到右子树的最左节点 next(也即是 root 节点在中序遍历下的后继节点):
    • 若后继节点 next 的左子树为空,将当前节点值添加至结果列表 res 中,然后将后继节点的左子树指向当前节点 root,并将当前节点更新为 root.right
    • 若后继节点 next 的左子树不为空,将后继节点左子树指向空(即解除 next 与 root 的指向关系),并将当前节点更新为 root.left
  3. 循环以上步骤,直至二叉树节点为空,遍历结束。
  4. 最后返回结果列表的逆序即可。

Morris 后序遍历跟 Morris 前序遍历思路一致,只是将前序的“根左右”变为“根右左”,最后逆序结果即可变成“左右根”。

Python3

递归:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def postorderTraversal(self, root: TreeNode) -> List[int]:
        res = []

        def postorder(root):
            if root:
                postorder(root.left)
                postorder(root.right)
                res.append(root.val)

        postorder(root)
        return res

栈实现非递归:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def postorderTraversal(self, root: TreeNode) -> List[int]:
        res = []
        if root:
            s = [root]
            while s:
                node = s.pop()
                res.append(node.val)
                if node.left:
                    s.append(node.left)
                if node.right:
                    s.append(node.right)
        return res[::-1]

Morris 遍历:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def postorderTraversal(self, root: TreeNode) -> List[int]:
        res = []
        while root:
            if root.right is None:
                res.append(root.val)
                root = root.left
            else:
                next = root.right
                while next.left and next.left != root:
                    next = next.left
                if next.left is None:
                    res.append(root.val)
                    next.left = root
                    root = root.right
                else:
                    next.left = None
                    root = root.left
        return res[::-1]

Java

递归:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<>();
        postorder(root, res);
        return res;
    }

    private void postorder(TreeNode root, List<Integer> res) {
        if (root != null) {
            postorder(root.left, res);
            postorder(root.right, res);
            res.add(root.val);
        }
    }
}

栈实现非递归:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        LinkedList<Integer> res = new LinkedList<>();
        if (root != null) {
            Deque<TreeNode> s = new LinkedList<>();
            s.offerLast(root);
            while (!s.isEmpty()) {
                TreeNode node = s.pollLast();
                res.addFirst(node.val);
                if (node.left != null) {
                    s.offerLast(node.left);
                }
                if (node.right != null) {
                    s.offerLast(node.right);
                }
            }
        }
        return res;
    }
}

Morris 遍历:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        LinkedList<Integer> res = new LinkedList<>();
        while (root != null) {
            if (root.right == null) {
                res.addFirst(root.val);
                root = root.left;
            } else {
                TreeNode next = root.right;
                while (next.left != null && next.left != root) {
                    next = next.left;
                }
                if (next.left == null) {
                    res.addFirst(root.val);
                    next.left = root;
                    root = root.right;
                } else {
                    next.left = null;
                    root = root.left;
                }
            }
        }
        return res;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> postorderTraversal(TreeNode *root) {
        vector<int> res;
        while (root)
        {
            if (root->right == nullptr)
            {
                res.push_back(root->val);
                root = root->left;
            }
            else
            {
                TreeNode *next = root->right;
                while (next->left && next->left != root)
                {
                    next = next->left;
                }
                if (next->left == nullptr)
                {
                    res.push_back(root->val);
                    next->left = root;
                    root = root->right;
                }
                else
                {
                    next->left = nullptr;
                    root = root->left;
                }
            }
        }
        reverse(res.begin(), res.end());
        return res;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func postorderTraversal(root *TreeNode) []int {
	var res []int
	for root != nil {
		if root.Right == nil {
			res = append([]int{root.Val}, res...)
			root = root.Left
		} else {
			next := root.Right
			for next.Left != nil && next.Left != root {
				next = next.Left
			}
			if next.Left == nil {
				res = append([]int{root.Val}, res...)
				next.Left = root
				root = root.Right
			} else {
				next.Left = nil
				root = root.Left
			}
		}
	}
	return res
}

...