Skip to content
/ nlb Public

Official Code for reproductivity of the ICLR Workshop DPFM 2024 paper: How to Craft Backdoors with Unlabeled Data Alone?

Notifications You must be signed in to change notification settings

PKU-ML/nlb

Repository files navigation

tests Documentation Status codecov

solo-learn

A library of self-supervised methods for unsupervised visual representation learning powered by PyTorch Lightning. We aim at providing SOTA self-supervised methods in a comparable environment while, at the same time, implementing training tricks. While the library is self-contained, it is possible to use the models outside of solo-learn.


News

  • [Dec 20 2021]: 🌑️ Added ImageNet results, scripts and checkpoints for MoCo V2+.
  • [Dec 05 2021]: 🎢 Separated SupCon from SimCLR and added runs.
  • [Dec 01 2021]: β›² Added PoolFormer.
  • [Nov 29 2021]: ‼️ Breaking changes! Update your versions!!!
  • [Nov 29 2021]: πŸ“– New tutorials!
  • [Nov 29 2021]: 🏘️ Added offline K-NN and offline UMAP.
  • [Nov 29 2021]: 🚨 Updated PyTorch and PyTorch Lightning versions. 10% faster.
  • [Nov 29 2021]: 🍻 Added code of conduct, contribution instructions, issue templates and UMAP tutorial.
  • [Nov 23 2021]: πŸ‘Ύ Added VIbCReg.
  • [Oct 21 2021]: 😀 Added support for object recognition via Detectron v2 and auto resume functionally that automatically tries to resume an experiment that crashed/reached a timeout.
  • [Oct 10 2021]: πŸ‘Ή Restructured augmentation pipelines to allow more flexibility and multicrop. Also added multicrop for BYOL.
  • [Sep 27 2021]: πŸ• Added NNSiam, NNBYOL, new tutorials for implementing new methods 1 and 2, more testing and fixed issues with custom data and linear evaluation.
  • [Sep 19 2021]: 🦘 Added online k-NN evaluation.
  • [Sep 17 2021]: πŸ€– Added ViT and Swin.
  • [Sep 13 2021]: πŸ“– Improved Docs and added tutorials for pretraining and offline linear eval.
  • [Aug 13 2021]: 🐳 DeepCluster V2 is now available.

Methods available:


Extra flavor

Multiple backbones

Data

  • Increased data processing speed by up to 100% using Nvidia Dali.
  • Flexible augmentations.

Evaluation and logging

  • Online linear evaluation via stop-gradient for easier debugging and prototyping (optionally available for the momentum backbone as well).
  • Online and offlfine K-NN evaluation.
  • Normal offline linear evaluation.
  • All the perks of PyTorch Lightning (mixed precision, gradient accumulation, clipping, automatic logging and much more).
  • Easy-to-extend modular code structure.
  • Custom model logging with a simpler file organization.
  • Automatic feature space visualization with UMAP.
  • Offline UMAP.
  • Common metrics and more to come...

Training tricks

  • Multi-cropping dataloading following SwAV:
    • Note: currently, only SimCLR supports this.
  • Exclude batchnorm and biases from LARS.
  • No LR scheduler for the projection head in SimSiam.

Requirements

  • torch
  • torchvision
  • tqdm
  • einops
  • wandb
  • pytorch-lightning
  • lightning-bolts
  • torchmetrics
  • scipy
  • timm

Optional:

  • nvidia-dali
  • matplotlib
  • seaborn
  • pandas
  • umap-learn

Installation

First clone the repo.

Then, to install solo-learn with Dali and/or UMAP support, use:

pip3 install .[dali,umap]

If no Dali/UMAP support is needed, the repository can be installed as:

pip3 install .

NOTE: if you are having trouble with dali, install it with pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda110 or with your specific cuda version.

NOTE 2: consider installing Pillow-SIMD for better loading times when not using Dali.

NOTE 3: If you want to modify the library, install it in dev mode with -e.

NOTE 4: Soon to be on pip.


Training

For pretraining the backbone, follow one of the many bash files in bash_files/pretrain/.

After that, for offline linear evaluation, follow the examples on bash_files/linear.

NOTE: Files try to be up-to-date and follow as closely as possible the recommended parameters of each paper, but check them before running.


Tutorials

Please, check out our documentation and tutorials:

If you want to contribute to solo-learn, make sure you take a look at how to contribute and follow the code of conduct


Model Zoo

All pretrained models avaiable can be downloaded directly via the tables below or programmatically by running one of the following scripts zoo/cifar10.sh, zoo/cifar100.sh, zoo/imagenet100.sh and zoo/imagenet.sh.


Results

Note: hyperparameters may not be the best, we will be re-running the methods with lower performance eventually.

CIFAR-10

Method Backbone Epochs Dali Acc@1 Acc@5 Checkpoint
Barlow Twins ResNet18 1000 ❌ 92.10 99.73 πŸ”—
BYOL ResNet18 1000 ❌ 92.58 99.79 πŸ”—
DeepCluster V2 ResNet18 1000 ❌ 88.85 99.58 πŸ”—
DINO ResNet18 1000 ❌ 89.52 99.71 πŸ”—
MoCo V2+ ResNet18 1000 ❌ 92.94 99.79 πŸ”—
NNCLR ResNet18 1000 ❌ 91.88 99.78 πŸ”—
ReSSL ResNet18 1000 ❌ 90.63 99.62 πŸ”—
SimCLR ResNet18 1000 ❌ 90.74 99.75 πŸ”—
Simsiam ResNet18 1000 ❌ 90.51 99.72 πŸ”—
SupCon ResNet18 1000 ❌ 93.82 99.65 πŸ”—
SwAV ResNet18 1000 ❌ 89.17 99.68 πŸ”—
VIbCReg ResNet18 1000 ❌ 91.18 99.74 πŸ”—
VICReg ResNet18 1000 ❌ 92.07 99.74 πŸ”—
W-MSE ResNet18 1000 ❌ 88.67 99.68 πŸ”—

CIFAR-100

Method Backbone Epochs Dali Acc@1 Acc@5 Checkpoint
Barlow Twins ResNet18 1000 ❌ 70.90 91.91 πŸ”—
BYOL ResNet18 1000 ❌ 70.46 91.96 πŸ”—
DeepCluster V2 ResNet18 1000 ❌ 63.61 88.09 πŸ”—
DINO ResNet18 1000 ❌ 66.76 90.34 πŸ”—
MoCo V2+ ResNet18 1000 ❌ 69.89 91.65 πŸ”—
NNCLR ResNet18 1000 ❌ 69.62 91.52 πŸ”—
ReSSL ResNet18 1000 ❌ 65.92 89.73 πŸ”—
SimCLR ResNet18 1000 ❌ 65.78 89.04 πŸ”—
Simsiam ResNet18 1000 ❌ 66.04 89.62 πŸ”—
SupCon ResNet18 1000 ❌ 70.38 89.57 πŸ”—
SwAV ResNet18 1000 ❌ 64.88 88.78 πŸ”—
VIbCReg ResNet18 1000 ❌ 67.37 90.07 πŸ”—
VICReg ResNet18 1000 ❌ 68.54 90.83 πŸ”—
W-MSE ResNet18 1000 ❌ 61.33 87.26 πŸ”—

ImageNet-100

Method Backbone Epochs Dali Acc@1 (online) Acc@1 (offline) Acc@5 (online) Acc@5 (offline) Checkpoint
Barlow Twins πŸš€ ResNet18 400 βœ”οΈ 80.38 80.16 95.28 95.14 πŸ”—
BYOL πŸš€ ResNet18 400 βœ”οΈ 80.16 80.32 95.02 94.94 πŸ”—
DeepCluster V2 ResNet18 400 ❌ 75.36 75.4 93.22 93.10 πŸ”—
DINO ResNet18 400 βœ”οΈ 74.84 74.92 92.92 92.78 πŸ”—
DINO πŸ˜ͺ ViT Tiny 400 ❌ 63.04 TODO 87.72 TODO πŸ”—
MoCo V2+ πŸš€ ResNet18 400 βœ”οΈ 78.20 79.28 95.50 95.18 πŸ”—
NNCLR πŸš€ ResNet18 400 βœ”οΈ 79.80 80.16 95.28 95.30 πŸ”—
ReSSL ResNet18 400 βœ”οΈ 76.92 78.48 94.20 94.24 πŸ”—
SimCLR πŸš€ ResNet18 400 βœ”οΈ 77.04 77.48 94.02 93.42 πŸ”—
Simsiam ResNet18 400 βœ”οΈ 74.54 78.72 93.16 94.78 πŸ”—
SupCon ResNet18 400 βœ”οΈ 84.40 TODO 95.72 TODO πŸ”—
SwAV ResNet18 400 βœ”οΈ 74.04 74.28 92.70 92.84 πŸ”—
VIbCReg ResNet18 400 βœ”οΈ 79.86 79.38 94.98 94.60 πŸ”—
VICReg πŸš€ ResNet18 400 βœ”οΈ 79.22 79.40 95.06 95.02 πŸ”—
W-MSE ResNet18 400 βœ”οΈ 67.60 69.06 90.94 91.22 πŸ”—

πŸš€ methods where hyperparameters were heavily tuned.

πŸ˜ͺ ViT is very compute intensive and unstable, so we are slowly running larger architectures and with a larger batch size. Atm, total batch size is 128 and we needed to use float32 precision. If you want to contribute by running it, let us know!

ImageNet

Method Backbone Epochs Dali Acc@1 (online) Acc@1 (offline) Acc@5 (online) Acc@5 (offline) Checkpoint
Barlow Twins ResNet50 100 βœ”οΈ 65.98 TODO 86.94 TODO TODO
BYOL ResNet50 100 βœ”οΈ 68.63 68.37 88.80 88.66 πŸ”—
DeepCluster V2 ResNet50 100 βœ”οΈ
DINO ResNet50 100 βœ”οΈ
MoCo V2+ ResNet50 100 βœ”οΈ 62.61 66.84 85.40 87.60 πŸ”—
NNCLR ResNet50 100 βœ”οΈ
ReSSL ResNet50 100 βœ”οΈ
SimCLR ResNet50 100 βœ”οΈ
Simsiam ResNet50 100 βœ”οΈ
SupCon ResNet50 100 βœ”οΈ
SwAV ResNet50 100 βœ”οΈ
VIbCReg ResNet50 100 βœ”οΈ
VICReg ResNet50 100 βœ”οΈ
W-MSE ResNet50 100 βœ”οΈ

Training efficiency for DALI

We report the training efficiency of some methods using a ResNet18 with and without DALI (4 workers per GPU) in a server with an Intel i9-9820X and two RTX2080ti.

Method Dali Total time for 20 epochs Time for a 1 epoch GPU memory (per GPU)
Barlow Twins ❌ 1h 38m 27s 4m 55s 5097 MB
βœ”οΈ 43m 2s 2m 10s (56% faster) 9292 MB
BYOL ❌ 1h 38m 46s 4m 56s 5409 MB
βœ”οΈ 50m 33s 2m 31s (49% faster) 9521 MB
NNCLR ❌ 1h 38m 30s 4m 55s 5060 MB
βœ”οΈ 42m 3s 2m 6s (64% faster) 9244 MB

Note: GPU memory increase doesn't scale with the model, rather it scales with the number of workers.


Citation

If you use solo-learn, please cite our preprint:

@misc{turrisi2021sololearn,
      title={Solo-learn: A Library of Self-supervised Methods for Visual Representation Learning}, 
      author={Victor G. Turrisi da Costa and Enrico Fini and Moin Nabi and Nicu Sebe and Elisa Ricci},
      year={2021},
      eprint={2108.01775},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={\url{https://github.com/vturrisi/solo-learn}},
}

About

Official Code for reproductivity of the ICLR Workshop DPFM 2024 paper: How to Craft Backdoors with Unlabeled Data Alone?

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published