Skip to content

Latest commit

 

History

History
372 lines (326 loc) · 15.8 KB

File metadata and controls

372 lines (326 loc) · 15.8 KB

预训练BERT

🏷️sec_bert-pretraining

利用 :numref:sec_bert中实现的BERT模型和 :numref:sec_bert-dataset中从WikiText-2数据集生成的预训练样本,我们将在本节中在WikiText-2数据集上对BERT进行预训练。

from d2l import mxnet as d2l
from mxnet import autograd, gluon, init, np, npx

npx.set_np()
#@tab pytorch
from d2l import torch as d2l
import torch
from torch import nn
#@tab paddle
from d2l import paddle as d2l
import warnings
warnings.filterwarnings("ignore")
import paddle
from paddle import nn

首先,我们加载WikiText-2数据集作为小批量的预训练样本,用于遮蔽语言模型和下一句预测。批量大小是512,BERT输入序列的最大长度是64。注意,在原始BERT模型中,最大长度是512。

#@tab mxnet, pytorch
batch_size, max_len = 512, 64
train_iter, vocab = d2l.load_data_wiki(batch_size, max_len)
#@tab paddle
def load_data_wiki(batch_size, max_len):
    """加载WikiText-2数据集

    Defined in :numref:`subsec_prepare_mlm_data`"""
    data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
    paragraphs = d2l._read_wiki(data_dir)
    train_set = d2l._WikiTextDataset(paragraphs, max_len)
    train_iter = paddle.io.DataLoader(dataset=train_set, batch_size=batch_size, return_list=True,
                                        shuffle=True, num_workers=0)
    return train_iter, train_set.vocab

batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)

预训练BERT

原始BERT :cite:Devlin.Chang.Lee.ea.2018有两个不同模型尺寸的版本。基本模型($\text{BERT}{\text{BASE}}$)使用12层(Transformer编码器块),768个隐藏单元(隐藏大小)和12个自注意头。大模型($\text{BERT}{\text{LARGE}}$)使用24层,1024个隐藏单元和16个自注意头。值得注意的是,前者有1.1亿个参数,后者有3.4亿个参数。为了便于演示,我们定义了一个小的BERT,使用了2层、128个隐藏单元和2个自注意头。

net = d2l.BERTModel(len(vocab), num_hiddens=128, ffn_num_hiddens=256,
                    num_heads=2, num_layers=2, dropout=0.2)
devices = d2l.try_all_gpus()
net.initialize(init.Xavier(), ctx=devices)
loss = gluon.loss.SoftmaxCELoss()
#@tab pytorch, paddle
net = d2l.BERTModel(len(vocab), num_hiddens=128, norm_shape=[128],
                    ffn_num_input=128, ffn_num_hiddens=256, num_heads=2,
                    num_layers=2, dropout=0.2, key_size=128, query_size=128,
                    value_size=128, hid_in_features=128, mlm_in_features=128,
                    nsp_in_features=128)
devices = d2l.try_all_gpus()
loss = nn.CrossEntropyLoss()

在定义训练代码实现之前,我们定义了一个辅助函数_get_batch_loss_bert。给定训练样本,该函数计算遮蔽语言模型和下一句子预测任务的损失。请注意,BERT预训练的最终损失是遮蔽语言模型损失和下一句预测损失的和。

#@save
def _get_batch_loss_bert(net, loss, vocab_size, tokens_X_shards,
                         segments_X_shards, valid_lens_x_shards,
                         pred_positions_X_shards, mlm_weights_X_shards,
                         mlm_Y_shards, nsp_y_shards):
    mlm_ls, nsp_ls, ls = [], [], []
    for (tokens_X_shard, segments_X_shard, valid_lens_x_shard,
         pred_positions_X_shard, mlm_weights_X_shard, mlm_Y_shard,
         nsp_y_shard) in zip(
        tokens_X_shards, segments_X_shards, valid_lens_x_shards,
        pred_positions_X_shards, mlm_weights_X_shards, mlm_Y_shards,
        nsp_y_shards):
        # 前向传播
        _, mlm_Y_hat, nsp_Y_hat = net(
            tokens_X_shard, segments_X_shard, valid_lens_x_shard.reshape(-1),
            pred_positions_X_shard)
        # 计算遮蔽语言模型损失
        mlm_l = loss(
            mlm_Y_hat.reshape((-1, vocab_size)), mlm_Y_shard.reshape(-1),
            mlm_weights_X_shard.reshape((-1, 1)))
        mlm_l = mlm_l.sum() / (mlm_weights_X_shard.sum() + 1e-8)
        # 计算下一句子预测任务的损失
        nsp_l = loss(nsp_Y_hat, nsp_y_shard)
        nsp_l = nsp_l.mean()
        mlm_ls.append(mlm_l)
        nsp_ls.append(nsp_l)
        ls.append(mlm_l + nsp_l)
        npx.waitall()
    return mlm_ls, nsp_ls, ls
#@tab pytorch
#@save
def _get_batch_loss_bert(net, loss, vocab_size, tokens_X,
                         segments_X, valid_lens_x,
                         pred_positions_X, mlm_weights_X,
                         mlm_Y, nsp_y):
    # 前向传播
    _, mlm_Y_hat, nsp_Y_hat = net(tokens_X, segments_X,
                                  valid_lens_x.reshape(-1),
                                  pred_positions_X)
    # 计算遮蔽语言模型损失
    mlm_l = loss(mlm_Y_hat.reshape(-1, vocab_size), mlm_Y.reshape(-1)) *\
    mlm_weights_X.reshape(-1, 1)
    mlm_l = mlm_l.sum() / (mlm_weights_X.sum() + 1e-8)
    # 计算下一句子预测任务的损失
    nsp_l = loss(nsp_Y_hat, nsp_y)
    l = mlm_l + nsp_l
    return mlm_l, nsp_l, l
#@tab paddle
#@save
def _get_batch_loss_bert(net, loss, vocab_size, tokens_X,
                         segments_X, valid_lens_x,
                         pred_positions_X, mlm_weights_X,
                         mlm_Y, nsp_y):
    # 前向传播
    _, mlm_Y_hat, nsp_Y_hat = net(tokens_X, segments_X,
                                  valid_lens_x.reshape([-1]), 
                                  pred_positions_X)
    # 计算遮蔽语言模型损失
    mlm_l = loss(mlm_Y_hat.reshape([-1, vocab_size]), mlm_Y.reshape([-1])) *\
    mlm_weights_X.reshape([-1, 1])
    mlm_l = mlm_l.sum() / (mlm_weights_X.sum() + 1e-8)
    # 计算下一句子预测任务的损失
    nsp_l = loss(nsp_Y_hat, nsp_y)
    l = mlm_l + nsp_l
    return mlm_l, nsp_l, l

通过调用上述两个辅助函数,下面的train_bert函数定义了在WikiText-2(train_iter)数据集上预训练BERT(net)的过程。训练BERT可能需要很长时间。以下函数的输入num_steps指定了训练的迭代步数,而不是像train_ch13函数那样指定训练的轮数(参见 :numref:sec_image_augmentation)。

def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
    trainer = gluon.Trainer(net.collect_params(), 'adam',
                            {'learning_rate': 0.01})
    step, timer = 0, d2l.Timer()
    animator = d2l.Animator(xlabel='step', ylabel='loss',
                            xlim=[1, num_steps], legend=['mlm', 'nsp'])
    # 遮蔽语言模型损失的和,下一句预测任务损失的和,句子对的数量,计数
    metric = d2l.Accumulator(4)
    num_steps_reached = False
    while step < num_steps and not num_steps_reached:
        for batch in train_iter:
            (tokens_X_shards, segments_X_shards, valid_lens_x_shards,
             pred_positions_X_shards, mlm_weights_X_shards,
             mlm_Y_shards, nsp_y_shards) = [gluon.utils.split_and_load(
                elem, devices, even_split=False) for elem in batch]
            timer.start()
            with autograd.record():
                mlm_ls, nsp_ls, ls = _get_batch_loss_bert(
                    net, loss, vocab_size, tokens_X_shards, segments_X_shards,
                    valid_lens_x_shards, pred_positions_X_shards,
                    mlm_weights_X_shards, mlm_Y_shards, nsp_y_shards)
            for l in ls:
                l.backward()
            trainer.step(1)
            mlm_l_mean = sum([float(l) for l in mlm_ls]) / len(mlm_ls)
            nsp_l_mean = sum([float(l) for l in nsp_ls]) / len(nsp_ls)
            metric.add(mlm_l_mean, nsp_l_mean, batch[0].shape[0], 1)
            timer.stop()
            animator.add(step + 1,
                         (metric[0] / metric[3], metric[1] / metric[3]))
            step += 1
            if step == num_steps:
                num_steps_reached = True
                break

    print(f'MLM loss {metric[0] / metric[3]:.3f}, '
          f'NSP loss {metric[1] / metric[3]:.3f}')
    print(f'{metric[2] / timer.sum():.1f} sentence pairs/sec on '
          f'{str(devices)}')
#@tab pytorch
def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    trainer = torch.optim.Adam(net.parameters(), lr=0.01)
    step, timer = 0, d2l.Timer()
    animator = d2l.Animator(xlabel='step', ylabel='loss',
                            xlim=[1, num_steps], legend=['mlm', 'nsp'])
    # 遮蔽语言模型损失的和,下一句预测任务损失的和,句子对的数量,计数
    metric = d2l.Accumulator(4)
    num_steps_reached = False
    while step < num_steps and not num_steps_reached:
        for tokens_X, segments_X, valid_lens_x, pred_positions_X,\
            mlm_weights_X, mlm_Y, nsp_y in train_iter:
            tokens_X = tokens_X.to(devices[0])
            segments_X = segments_X.to(devices[0])
            valid_lens_x = valid_lens_x.to(devices[0])
            pred_positions_X = pred_positions_X.to(devices[0])
            mlm_weights_X = mlm_weights_X.to(devices[0])
            mlm_Y, nsp_y = mlm_Y.to(devices[0]), nsp_y.to(devices[0])
            trainer.zero_grad()
            timer.start()
            mlm_l, nsp_l, l = _get_batch_loss_bert(
                net, loss, vocab_size, tokens_X, segments_X, valid_lens_x,
                pred_positions_X, mlm_weights_X, mlm_Y, nsp_y)
            l.backward()
            trainer.step()
            metric.add(mlm_l, nsp_l, tokens_X.shape[0], 1)
            timer.stop()
            animator.add(step + 1,
                         (metric[0] / metric[3], metric[1] / metric[3]))
            step += 1
            if step == num_steps:
                num_steps_reached = True
                break

    print(f'MLM loss {metric[0] / metric[3]:.3f}, '
          f'NSP loss {metric[1] / metric[3]:.3f}')
    print(f'{metric[2] / timer.sum():.1f} sentence pairs/sec on '
          f'{str(devices)}')
#@tab paddle
def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
    trainer = paddle.optimizer.Adam(parameters=net.parameters(), learning_rate=0.01)
    step, timer = 0, d2l.Timer()
    animator = d2l.Animator(xlabel='step', ylabel='loss',
                            xlim=[1, num_steps], legend=['mlm', 'nsp'])
    # 遮蔽语言模型损失的和,下一句预测任务损失的和,句子对的数量,计数
    metric = d2l.Accumulator(4)
    num_steps_reached = False
    while step < num_steps and not num_steps_reached:
        for tokens_X, segments_X, valid_lens_x, pred_positions_X,\
            mlm_weights_X, mlm_Y, nsp_y in train_iter:
            trainer.clear_grad()
            timer.start()
            mlm_l, nsp_l, l = _get_batch_loss_bert(
                net, loss, vocab_size, tokens_X, segments_X, valid_lens_x,
                pred_positions_X, mlm_weights_X, mlm_Y, nsp_y)
            l.backward()
            trainer.step()
            metric.add(mlm_l, nsp_l, tokens_X.shape[0], 1)
            timer.stop()
            animator.add(step + 1,
                         (metric[0] / metric[3], metric[1] / metric[3]))
            step += 1
            if step == num_steps:
                num_steps_reached = True
                break

    print(f'MLM loss {metric[0] / metric[3]:.3f}, '
          f'NSP loss {metric[1] / metric[3]:.3f}')
    print(f'{metric[2] / timer.sum():.1f} sentence pairs/sec on '
          f'{str(devices)}')

在预训练过程中,我们可以绘制出遮蔽语言模型损失和下一句预测损失。

#@tab mxnet, pytorch
train_bert(train_iter, net, loss, len(vocab), devices, 50)
#@tab paddle
train_bert(train_iter, net, loss, len(vocab), devices[:1], 50)

用BERT表示文本

在预训练BERT之后,我们可以用它来表示单个文本、文本对或其中的任何词元。下面的函数返回tokens_atokens_b中所有词元的BERT(net)表示。

def get_bert_encoding(net, tokens_a, tokens_b=None):
    tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
    token_ids = np.expand_dims(np.array(vocab[tokens], ctx=devices[0]),
                               axis=0)
    segments = np.expand_dims(np.array(segments, ctx=devices[0]), axis=0)
    valid_len = np.expand_dims(np.array(len(tokens), ctx=devices[0]), axis=0)
    encoded_X, _, _ = net(token_ids, segments, valid_len)
    return encoded_X
#@tab pytorch
def get_bert_encoding(net, tokens_a, tokens_b=None):
    tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
    token_ids = torch.tensor(vocab[tokens], device=devices[0]).unsqueeze(0)
    segments = torch.tensor(segments, device=devices[0]).unsqueeze(0)
    valid_len = torch.tensor(len(tokens), device=devices[0]).unsqueeze(0)
    encoded_X, _, _ = net(token_ids, segments, valid_len)
    return encoded_X
#@tab paddle
def get_bert_encoding(net, tokens_a, tokens_b=None):
    tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
    token_ids = paddle.to_tensor(vocab[tokens]).unsqueeze(0)
    segments = paddle.to_tensor(segments).unsqueeze(0)
    valid_len = paddle.to_tensor(len(tokens))
    
    encoded_X, _, _ = net(token_ids, segments, valid_len)
    return encoded_X

考虑“a crane is flying”这句话。回想一下 :numref:subsec_bert_input_rep中讨论的BERT的输入表示。插入特殊标记“<cls>”(用于分类)和“<sep>”(用于分隔)后,BERT输入序列的长度为6。因为零是“<cls>”词元,encoded_text[:, 0, :]是整个输入语句的BERT表示。为了评估一词多义词元“crane”,我们还打印出了该词元的BERT表示的前三个元素。

#@tab all
tokens_a = ['a', 'crane', 'is', 'flying']
encoded_text = get_bert_encoding(net, tokens_a)
# 词元:'<cls>','a','crane','is','flying','<sep>'
encoded_text_cls = encoded_text[:, 0, :]
encoded_text_crane = encoded_text[:, 2, :]
encoded_text.shape, encoded_text_cls.shape, encoded_text_crane[0][:3]

现在考虑一个句子“a crane driver came”和“he just left”。类似地,encoded_pair[:, 0, :]是来自预训练BERT的整个句子对的编码结果。注意,多义词元“crane”的前三个元素与上下文不同时的元素不同。这支持了BERT表示是上下文敏感的。

#@tab all
tokens_a, tokens_b = ['a', 'crane', 'driver', 'came'], ['he', 'just', 'left']
encoded_pair = get_bert_encoding(net, tokens_a, tokens_b)
# 词元:'<cls>','a','crane','driver','came','<sep>','he','just',
# 'left','<sep>'
encoded_pair_cls = encoded_pair[:, 0, :]
encoded_pair_crane = encoded_pair[:, 2, :]
encoded_pair.shape, encoded_pair_cls.shape, encoded_pair_crane[0][:3]

在 :numref:chap_nlp_app中,我们将为下游自然语言处理应用微调预训练的BERT模型。

小结

  • 原始的BERT有两个版本,其中基本模型有1.1亿个参数,大模型有3.4亿个参数。
  • 在预训练BERT之后,我们可以用它来表示单个文本、文本对或其中的任何词元。
  • 在实验中,同一个词元在不同的上下文中具有不同的BERT表示。这支持BERT表示是上下文敏感的。

练习

  1. 在实验中,我们可以看到遮蔽语言模型损失明显高于下一句预测损失。为什么?
  2. 将BERT输入序列的最大长度设置为512(与原始BERT模型相同)。使用原始BERT模型的配置,如$\text{BERT}_{\text{LARGE}}$。运行此部分时是否遇到错误?为什么?

:begin_tab:mxnet Discussions :end_tab:

:begin_tab:pytorch Discussions :end_tab:

:begin_tab:paddle Discussions :end_tab: