From 16e173bdc4190ec9f2240ff8d9a80c0854ac99fb Mon Sep 17 00:00:00 2001 From: Francisco Javier Blazquez Martinez Date: Sun, 24 Jan 2021 17:46:11 +0100 Subject: [PATCH] Readme with links and bibliography added --- readme.md | 39 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 39 insertions(+) create mode 100644 readme.md diff --git a/readme.md b/readme.md new file mode 100644 index 0000000..ae6c750 --- /dev/null +++ b/readme.md @@ -0,0 +1,39 @@ +# Graver bases + +Project in mathematics developed at the [Chair of Discrete Optimization](https://www.epfl.ch/labs/disopt/) at the **École Polytechnique Fédérale de Lausanne**, Switzerland. + +* **Project director:** [Friedrich Eisenbrand](https://en.wikipedia.org/wiki/Friedrich_Eisenbrand) +* **Project supervisor:** [Jana Cslovjecsek](https://www.epfl.ch/labs/disopt/page-10520-en-html/page-31595-en-html/jana-cslovjecsek/) + +The final result of the project can be accessed here: **[Graver_bases.pdf](Graver_bases.pdf)** + +## Abstract + +In the project we study the latest techniques based on the **Graver bases** and its bounds as well as their application to the **N-Fold IP**, +a restricted formulation of the IP which has won relevance in the last decades given its theoretical properties and its wide applications. For +the **N-Fold IP** we introduce the best algorithm known for its resolution running in a roughly linear time as well as a quadratic augmentation +algorithm based on the properties of the Graver basis of the N-Fold matrix. + +The following presentations may be useful as an overview: + +* [Graver bases bounds augmentation algorithm](Graver_bases_presentation_mid_semester.pdf) +* [N-Fold IP via LP rounding](Graver_bases_presentation_end_semester.pdf) + + +## Bibliography + +* Graver, [On the foundations of linear and integer linear programming I](https://link.springer.com/article/10.1007/BF01681344), 1975. +* Sturmfels, [Algebraic Recipes for Integer Programming](https://arxiv.org/abs/math/0310194), 2003. +* Finhold, Hemmecke, [Lower bounds on the Graver complexity of M-fold matrices](https://arxiv.org/abs/1311.3853), 2013. +* Eisenbrand, Hunkenschröder, Klein,[Faster Algorithms for Integer Programs with Block Structure](https://arxiv.org/abs/1802.06289), 2018. +* Cslovjecsek, Eisenbrand, Weismantel, [N-fold integer programming via LP rounding](https://arxiv.org/abs/2002.07745), 2020. +* Hemmecke, Onn, Romanchuk, [N-fold integer programming in cubic time](https://arxiv.org/pdf/1101.3267.pdf), 2011. +* Eisenbrand, Weismantel, [Proximity results and faster algorithms for Integer Programming using the Steinitz Lemma](https://arxiv.org/abs/1707.00481), 2019. +* De Loera, Hemmecke, Onn, Weismantel, [N-Fold integer programming](https://www.math.ucdavis.edu/~deloera/researchsummary/n-fold.pdf), 2006. +* Hemmecke, [Exploiting Symmetries in the Computation of Graver Bases](https://www.researchgate.net/publication/2115495_Exploiting_Symmetries_in_the_Computation_of_Graver_Bases), 2004. +* Hemmecke, Onn, Weismantel, [A polynomial oracle-time algorithm for convex integer minimization](https://link.springer.com/article/10.1007/s10107-009-0276-7), 2009. +* Onn, [Convex discrete optimization](https://arxiv.org/pdf/math/0703575.pdf), 2007. +* Onn, [Nonlinear discrete optimization](http://pi.math.cornell.edu/event/conf/billera65/notes/onn.pdf), 2010. +* De Loera, Onn, [All linear and integer programs are slim 3-way transportation programs](https://www.math.ucdavis.edu/~deloera/researchsummary/universalitytransportation.pdf), 2006. +* Steinitz, [Bedingt konvergente reihen und konvexe systeme](https://eudml.org/doc/149403), 1913. +