
OpenTelemetry Configuration Service 
 
Author: jmontana@google.com 
Date: May 15, 2020 
Status: Draft 
Go Link: go/otel-dynamic-config 

Overview 
This proposal adds support for a configuration service to OpenTelemetry. A configuration 
service is used to remotely configure metric export schedules and trace sampling rates for 
processes instrumented with OpenTelemetry. This will allow users to make decisions about 
tradeoffs between instrumentation fidelity and resource usage without having to redeploy or 
restart running jobs. Much like OpenTelemetry's vendor-agnostic metric and trace exporting, 
OpenTelemetry will also include a mechanism for using the collector as an optional bridge for 
translating arbitrary configuration backends into the OpenTelemetry configuration service 
protocol understood by the agent, so that any vendor can implement their own configuration 
service to be used by the OpenTelemetry agent. 
 
For example, during normal use, a user could use sparse networking, CPU, and memory 
resources required to send and store telemetry data by specifying sampling of 0.1% of traces, 
collecting critical metrics such as SLI-related latency distributions and container CPU stats only 
every five minutes, and not collecting non-critical metrics. Later, while investigating a production 
issue, the same user could easily increase information available for debugging by reconfiguring 
some of their processes to sample 2% of traces, collect critical metrics every minute, and begin 
collecting metrics that were not deemed useful before. Because this change is centralized and 
does not require redeploying with new configurations, there is lower friction and risk in updating 
the configurations. 

Design 
Changes required to support a configuration service are broken down into three parts: (1) 
specifying a configuration service protocol, (2) updating the agent/SDK to use the new protocol 
to drive collection frequencies, and (3) updating the collector to allow it to act as a shim 
configuration service for the agent. This design follows a similar model to metric and trace 
exporting, which also support shimming from the protocol used between agent and collector to 
an arbitrary protocol between the collector and the monitoring backend. 

http://go/otel-dynamic-config


OpenTelemetry Configuration Service Protocol 
A new configuration service protocol will be added to the OpenTelemetry specification. A 
configuration service implementing the protocol takes in a Resource consisting of key-value 
attributes, and returns a list of metric collection schedules, a list of trace sampling 
configurations, and a recommended wait time to cache results before querying the configuration 
service again. 
 
Each metric collection schedule will consist of the following: 

● Inclusion patterns consisting of lightweight rules for identifying metrics to which the 
schedule applies (e.g., "exactly matches cpu_usage", "all metrics", or "metrics that start 
with cpu_"). 

● Exclusions patterns consisting of lightweight rules for identifying metrics to which the 
schedule does not apply, even if they match an inclusion pattern. 

● The period at which applicable metrics should be collected/exported, e.g., 1 hour, 30 
minutes, 10 minutes, 5 minutes, 1 minute, 30 seconds. Longer periods must be divisible 
by all shorter periods. 

● Possibly some opaque metadata (e.g., "key") that is useful to a specific monitoring 
backend, and which would be passed into an exporter during metric writes. 

 
Trace sampling configurations will consist of the following: 

● Inclusion patterns consisting of lightweight rules for identifying which traces apply based 
on sampling parameters. 

● The strategy and extent of sampling that should be done - most likely a sampling 
probability. 

OpenTelemetry Agent/SDK 
The OpenTelemetry agent may be configured to periodically query a configuration service 
endpoint for updates to configurations. For backends that use an alternative configuration 
protocol, the collector may be configured as a configuration service, acting as a shim to the 
alternative backend service. 
 
For metrics, the OpenTelemetry agent will support periodically querying a configuration service 
to determine how frequently metrics should be collected and exported, as an alternative to the 
current method of exporting all metrics at a fixed period. 
 
For traces, a new Sampler implementation similar to ProbabilitySampler will support reading 
from a configuration service to determine which trace sampling configuration best applies, using 
the probability returned by the configuration service instead of a fixed probability. 

https://github.com/open-telemetry/opentelemetry-proto/blob/master/opentelemetry/proto/resource/v1/resource.proto#L27
https://github.com/open-telemetry/opentelemetry-go/blob/34c03ec9a94fa667fa7bb009da02a7dc2676b7ad/sdk/trace/sampling.go#L32
https://github.com/open-telemetry/opentelemetry-go/blob/34bd99896311a81cf843475779cae2e1c05e6257/sdk/metric/controller/push/push.go#L72-L76
https://github.com/open-telemetry/opentelemetry-go/blob/34c03ec9a94fa667fa7bb009da02a7dc2676b7ad/sdk/trace/sampling.go#L84


OpenTelemetry Collector 
The collector will support a new interface for a ConfigurationService that can be used by an 
agent, allowing a custom implementation of the configuration service protocol described above, 
to act as an optional bridge between an agent and an arbitrary configuration service. This 
interface can be implemented as a shim to support accessing remote configurations from 
arbitrary backends. The collector is configured to expose an endpoint for requests to the 
ConfigurationService, and returns results on that endpoint. 
 
The collector will support both implementing a standalone ConfigurationService, and combining 
ConfigurationService and Exporter implementations for monitoring and tracing backends that 
have integrated remote configurations. 
 

Related Resources 
● Specification issue #372: Remote sampling specification for proto layout 
● Collector issue #273: Watch config file for changes. 
● WIP config reloading pull request by Shopify. 

https://github.com/open-telemetry/opentelemetry-specification/issues/372
https://github.com/open-telemetry/opentelemetry-collector/issues/273
https://github.com/Shopify/opentelemetry-collector/pull/1

