Skip to content

Latest commit

 

History

History
144 lines (103 loc) · 6.05 KB

File metadata and controls

144 lines (103 loc) · 6.05 KB

稠密连接网络(DenseNet)

ResNet中的跨层连接设计引申出了数个后续工作。本节我们介绍其中的一个:稠密连接网络(DenseNet) [1]。 它与ResNet的主要区别如图5.10所示。

ResNet(左)与DenseNet(右)在跨层连接上的主要区别:使用相加和使用连结

图5.10中将部分前后相邻的运算抽象为模块$A$和模块$B$。与ResNet的主要区别在于,DenseNet里模块$B$的输出不是像ResNet那样和模块$A$的输出相加,而是在通道维上连结。这样模块$A$的输出可以直接传入模块$B$后面的层。在这个设计里,模块$A$直接跟模块$B$后面的所有层连接在了一起。这也是它被称为“稠密连接”的原因。

DenseNet的主要构建模块是稠密块(dense block)和过渡层(transition layer)。前者定义了输入和输出是如何连结的,后者则用来控制通道数,使之不过大。

稠密块

DenseNet使用了ResNet改良版的“批量归一化、激活和卷积”结构(参见上一节的练习),我们首先在conv_block函数里实现这个结构。

import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import nn

def conv_block(num_channels):
    blk = nn.Sequential()
    blk.add(nn.BatchNorm(), nn.Activation('relu'),
            nn.Conv2D(num_channels, kernel_size=3, padding=1))
    return blk

稠密块由多个conv_block组成,每块使用相同的输出通道数。但在前向计算时,我们将每块的输入和输出在通道维上连结。

class DenseBlock(nn.Block):
    def __init__(self, num_convs, num_channels, **kwargs):
        super(DenseBlock, self).__init__(**kwargs)
        self.net = nn.Sequential()
        for _ in range(num_convs):
            self.net.add(conv_block(num_channels))

    def forward(self, X):
        for blk in self.net:
            Y = blk(X)
            X = nd.concat(X, Y, dim=1)  # 在通道维上将输入和输出连结
        return X

在下面的例子中,我们定义一个有2个输出通道数为10的卷积块。使用通道数为3的输入时,我们会得到通道数为$3+2\times 10=23$的输出。卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)。

blk = DenseBlock(2, 10)
blk.initialize()
X = nd.random.uniform(shape=(4, 3, 8, 8))
Y = blk(X)
Y.shape

过渡层

由于每个稠密块都会带来通道数的增加,使用过多则会带来过于复杂的模型。过渡层用来控制模型复杂度。它通过$1\times1$卷积层来减小通道数,并使用步幅为2的平均池化层减半高和宽,从而进一步降低模型复杂度。

def transition_block(num_channels):
    blk = nn.Sequential()
    blk.add(nn.BatchNorm(), nn.Activation('relu'),
            nn.Conv2D(num_channels, kernel_size=1),
            nn.AvgPool2D(pool_size=2, strides=2))
    return blk

对上一个例子中稠密块的输出使用通道数为10的过渡层。此时输出的通道数减为10,高和宽均减半。

blk = transition_block(10)
blk.initialize()
blk(Y).shape

DenseNet模型

我们来构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大池化层。

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
        nn.BatchNorm(), nn.Activation('relu'),
        nn.MaxPool2D(pool_size=3, strides=2, padding=1))

类似于ResNet接下来使用的4个残差块,DenseNet使用的是4个稠密块。同ResNet一样,我们可以设置每个稠密块使用多少个卷积层。这里我们设成4,从而与上一节的ResNet-18保持一致。稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。

ResNet里通过步幅为2的残差块在每个模块之间减小高和宽。这里我们则使用过渡层来减半高和宽,并减半通道数。

num_channels, growth_rate = 64, 32  # num_channels为当前的通道数
num_convs_in_dense_blocks = [4, 4, 4, 4]

for i, num_convs in enumerate(num_convs_in_dense_blocks):
    net.add(DenseBlock(num_convs, growth_rate))
    # 上一个稠密块的输出通道数
    num_channels += num_convs * growth_rate
    # 在稠密块之间加入通道数减半的过渡层
    if i != len(num_convs_in_dense_blocks) - 1:
        num_channels //= 2
        net.add(transition_block(num_channels))

同ResNet一样,最后接上全局池化层和全连接层来输出。

net.add(nn.BatchNorm(), nn.Activation('relu'), nn.GlobalAvgPool2D(),
        nn.Dense(10))

获取数据并训练模型

由于这里使用了比较深的网络,本节里我们将输入高和宽从224降到96来简化计算。

lr, num_epochs, batch_size, ctx = 0.1, 5, 256, d2l.try_gpu()
net.initialize(ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs)

小结

  • 在跨层连接上,不同于ResNet中将输入与输出相加,DenseNet在通道维上连结输入与输出。
  • DenseNet的主要构建模块是稠密块和过渡层。

练习

  • DenseNet论文中提到的一个优点是模型参数比ResNet的更小,这是为什么?
  • DenseNet被人诟病的一个问题是内存或显存消耗过多。真的会这样吗?可以把输入形状换成$224\times 224$,来看看实际的消耗。
  • 实现DenseNet论文中的表1提出的不同版本的DenseNet [1]。

参考文献

[1] Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, No. 2).

扫码直达讨论区