Skip to content

A Go library for talking to cars over OBD-II

License

Notifications You must be signed in to change notification settings

rzetterberg/elmobd

Repository files navigation

README

https://img.shields.io/badge/status-active-green.svg https://travis-ci.org/rzetterberg/elmobd.svg?branch=master https://goreportcard.com/badge/github.com/rzetterberg/elmobd?status.svg https://godoc.org/github.com/rzetterberg/elmobd?status.svg

Version
0.2.2

Go library for communicating with cars OBD-II system using ELM327 based USB-devices.

To make this library as good as possible - feedback, bug reports and feature requests are very welcome in the GitHub issues of this project.

How it works

There are more than 10 different OBD-II signal protocol variations used by the various cars that exist. To avoid having to handle all the details of these protocols the ELM327 exists. The ELM327 acts a facade between the computer and the car. You talk to the ELM327 using a simple text based protocol similar to the Hayes command set and the ELM327 takes care of the communication details of the car.

docs/assets/overview.png

Communicating with the ELM327 is similar to communicating with a web server. You make a request and wait for a response. However, in this context we are calling a command and waiting for one or more responses.

This library is designed to be used in a way that resembles the way you physically use the device. You have a type called Device that represents a ELM327 device connected to the computer. This Device then has a function called RunCommand that sends a command to the actual device and then waits for a response.

This library aims to be as type safe as possible, which means that you don’t deal with raw text commands, instead you have different command types.

All command types need to implement the OBDCommand interface to be able to be run on the device. Since there are A LOT of OBD commands, you can easily extend this library, by just implementing the OBDCommand interface of your commands.

Let’s start by looking at some example of how you use the library.

Usage on Linux

First of all, you need to plug in your ELM327 device into your computer and get the path to the device. You can plugin the device and check dmesg, this is what I get on my computer:

$ dmesg | tail
[359720.858480] usb 6-2: Manufacturer: FTDI
[359720.858482] usb 6-2: SerialNumber: A503GJEX
[359720.897717] usbcore: registered new interface driver usbserial
[359720.897733] usbcore: registered new interface driver usbserial_generic
[359720.897748] usbserial: USB Serial support registered for generic
[359720.901755] usbcore: registered new interface driver ftdi_sio
[359720.901767] usbserial: USB Serial support registered for FTDI USB Serial Device
[359720.901839] ftdi_sio 6-2:1.0: FTDI USB Serial Device converter detected
[359720.901913] usb 6-2: Detected FT232RL
[359720.904481] usb 6-2: FTDI USB Serial Device converter now attached to ttyUSB0

Now that I know that the device is available at /dev/ttyUSB0 I can use the library to connect to the device and check the ELM327 version of the device:

example1.go

package main

import (
	"flag"
	"fmt"
	"github.com/rzetterberg/elmobd"
)

func main() {
	serialPath := flag.String(
		"serial",
		"/dev/ttyUSB0",
		"Path to the serial device to use",
	)

	flag.Parse()

	dev, err := elmobd.NewDevice(*serialPath, false)

	if err != nil {
		fmt.Println("Failed to create new device", err)
		return
	}

	version, err := dev.GetVersion()

	if err != nil {
		fmt.Println("Failed to get version", err)
		return
	}

	fmt.Println("Device has version", version)
}

When I run this executable on my machine with the ELM327 device plugged in I get the following result:

$ go run example.go
Device has version OBDII by elm329@gmail.com

The next step is to run some OBD commands on the device. For this we need to plug in the ELM327 into our car and turn on the ignition.

Like mentioned before you use the function RunCommand that accepts a OBDCommand to run. A OBDCommand has 3 responsibilities:

  • Tell the ELM327 what command to run
  • Store the value
  • Convert the value to a common format

So you start out by creating a new OBDCommand that does not contain a value. You then take that OBDCommand and call the RunCommand function with it. RunCommand will then return the OBDCommand with the value from the car.

Let’s try this out by checking the RPM of the engine. There is a OBDCommand for that defined in the library already, called EngineRPM. We start by creating a new EngineRPM that we call RunCommand with:

example2.go

package main

import (
	"flag"
	"fmt"
	"github.com/rzetterberg/elmobd"
)

func main() {
	serialPath := flag.String(
		"serial",
		"/dev/ttyUSB0",
		"Path to the serial device to use",
	)

	flag.Parse()

	dev, err := elmobd.NewDevice(*serialPath, false)

	if err != nil {
		fmt.Println("Failed to create new device", err)
		return
	}

	rpm, err := dev.RunOBDCommand(elmobd.NewEngineRPM())

	if err != nil {
		fmt.Println("Failed to get rpm", err)
		return
	}

	fmt.Printf("Engine spins at %s RPMs\n", rpm.ValueAsLit())
}

There are more than 180 different OBD commands, and cars have different support for these commands. So to avoid sending OBD commands to the car that it does not support we can check what commands the car support:

example3.go

package main

import (
	"flag"
	"fmt"
	"github.com/rzetterberg/elmobd"
)

func main() {
	serialPath := flag.String(
		"serial",
		"/dev/ttyUSB0",
		"Path to the serial device to use",
	)

	flag.Parse()

	dev, err := elmobd.NewDevice(*serialPath, false)

	if err != nil {
		fmt.Println("Failed to create new device", err)
		return
	}

	supported, err := dev.CheckSupportedCommands()

	if err != nil {
		fmt.Println("Failed to check supported commands", err)
		return
	}

	rpm := elmobd.NewEngineRPM()

	if supported.IsSupported(rpm) {
		fmt.Println("The car supports checking RPM")
	} else {
		fmt.Println("The car does NOT supports checking RPM")
	}
}

The supported here is a SupportedCommands which is a special type that stores the raw lookup table and exposes two helper functions that reads this table:

  • IsSupported
  • FilterSupported

These two functions are used to check if a single command is supported and filter out the supported commands of a list of commands.

Please see the godocs for a more detailed explanation of the library and it’s structure.

Features

  • [X] Reading sensor data
  • [ ] Reading trouble codes
  • [ ] Resetting Check Engine Light
  • [ ] Reading freezed sensor data

(Sorted by priority)

Roadmap

Next release (0.3.0) will happen during December this year and will focus on performance and sensor support:

  • Faster sensor reading
  • More robust testing

A feature complete release 1.0.0 is planned to be done in 2018 Q2.

You can check the CHANGELOG for details of historic releases.

Compability

Platforms

The library has been built and tested on the following platforms:

Operating systemGo version
Linux 4.9.25 x86_641.9

Cars

The library has been used successfully on the following cars:

CarLibrary version
Lexus IS200 Manual 20040.1.0