
Seal5 Development & User Meeting
08.08.2024

Agenda (08.08.2024)

• Sync on ongoing work
• CI/CD Integration (DLR)

• Intrinsic/Builtins Support (DLR)

• Support for Load/Store/Branch (TUM)

• Next meeting dates
• Internal: 15.08.2024, 11:00 (Skype)

• Public: 12.09.2024, 11:00 (Zoom)

CI/CD Integration

• Related Repositories:
• Private, will be made public when finished

• Status:
• ETISS Workflow (Without M2-ISA-R) works
• Seal5 Workflow works (Takes 1 hour)
• Working in Target SW & Testing Workflow

• Tipps:
• Cache GCC Download in GitHub Actions Cache, See:

• https://github.com/tum-ei-eda/muriscv-
nn/blob/master/.github/workflows/download_dependencies.yml

• https://github.com/tum-ei-eda/muriscv-
nn/blob/6eb3f32dd6f7ad1f2f1246f6379deeb73ac98ff8/.github/workflows/build_spike.yml#L21

https://github.com/tum-ei-eda/muriscv-nn/blob/master/.github/workflows/download_dependencies.yml
https://github.com/tum-ei-eda/muriscv-nn/blob/6eb3f32dd6f7ad1f2f1246f6379deeb73ac98ff8/.github/workflows/build_spike.yml#L21

Intrinsics/Builtins Support

• PoC
• Reuse YAML syntax for configuration
• Consider using CoreDSL in the future

• Custom Syntax?→Maybe if Aliases/Pseudoinstructions (i.e. mv rd, rs → addi rd, rs, 0) can
be described in CDSL

• For simple intrinsics: using instruction/operand attributes might work

• Not stored in Metamodel
• Python implementation of Writer
• 3 Patches per intrinsic
• Cleanup (less duplication)
• Testing with single simple intrinsic (32-bit only, no vectors)
• Complex mappings (i.e. Core-V Shuffle) will not be covered
→ Open PR within next few weeks?

Supporting Loads/Stores/Branches

• Updates:
• Loads/Stores

• Problem: No way to define mem patterns in TableGen for GlobalISel due to missing mapping
of relevant ISelDAG nodes to GMIR.

• Solution: Would need support for GMIR Patterns in Tablegen (which does not exist yet, as
existing ISelDAG patterns are being imported, which does only work if there is a valid
mapping)

• Workaround: Generate C++ code for Matching/Selecting these instructions…

• Branches:
• Problem: Branches are a conditional PC update in CDSL, which can not be represented in

LLVM-IR which is generated by the CDSL2LLVM Frontend (single basic-block allowed)
• Workaround (easy): Detect various types of Branches (without prefix) in Python and generate

the Pattern (Would need to be hardcoded for detecting CondCode & Operands (REG, IMM,…))
• Workaround (better): Detect branches in Python and translate them into a function call which

could be processed by PatternGen to generate valid pattern including prefix instructions…

