Skip to content

Commit

Permalink
Merge ../linux-2.6-x86
Browse files Browse the repository at this point in the history
Conflicts:

	arch/x86/kernel/io_apic.c
	kernel/sched.c
	kernel/sched_stats.h
  • Loading branch information
rustyrussell committed Dec 13, 2008
2 parents 7be7585 + 8299608 commit 968ea6d
Show file tree
Hide file tree
Showing 215 changed files with 10,580 additions and 3,916 deletions.
32 changes: 32 additions & 0 deletions Documentation/controllers/cpuacct.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
CPU Accounting Controller
-------------------------

The CPU accounting controller is used to group tasks using cgroups and
account the CPU usage of these groups of tasks.

The CPU accounting controller supports multi-hierarchy groups. An accounting
group accumulates the CPU usage of all of its child groups and the tasks
directly present in its group.

Accounting groups can be created by first mounting the cgroup filesystem.

# mkdir /cgroups
# mount -t cgroup -ocpuacct none /cgroups

With the above step, the initial or the parent accounting group
becomes visible at /cgroups. At bootup, this group includes all the
tasks in the system. /cgroups/tasks lists the tasks in this cgroup.
/cgroups/cpuacct.usage gives the CPU time (in nanoseconds) obtained by
this group which is essentially the CPU time obtained by all the tasks
in the system.

New accounting groups can be created under the parent group /cgroups.

# cd /cgroups
# mkdir g1
# echo $$ > g1

The above steps create a new group g1 and move the current shell
process (bash) into it. CPU time consumed by this bash and its children
can be obtained from g1/cpuacct.usage and the same is accumulated in
/cgroups/cpuacct.usage also.
149 changes: 117 additions & 32 deletions Documentation/ftrace.txt
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ of ftrace. Here is a list of some of the key files:
tracer is not adding more data, they will display
the same information every time they are read.

iter_ctrl: This file lets the user control the amount of data
trace_options: This file lets the user control the amount of data
that is displayed in one of the above output
files.

Expand All @@ -94,10 +94,10 @@ of ftrace. Here is a list of some of the key files:
only be recorded if the latency is greater than
the value in this file. (in microseconds)

trace_entries: This sets or displays the number of bytes each CPU
buffer_size_kb: This sets or displays the number of kilobytes each CPU
buffer can hold. The tracer buffers are the same size
for each CPU. The displayed number is the size of the
CPU buffer and not total size of all buffers. The
CPU buffer and not total size of all buffers. The
trace buffers are allocated in pages (blocks of memory
that the kernel uses for allocation, usually 4 KB in size).
If the last page allocated has room for more bytes
Expand Down Expand Up @@ -127,6 +127,8 @@ of ftrace. Here is a list of some of the key files:
be traced. If a function exists in both set_ftrace_filter
and set_ftrace_notrace, the function will _not_ be traced.

set_ftrace_pid: Have the function tracer only trace a single thread.

available_filter_functions: This lists the functions that ftrace
has processed and can trace. These are the function
names that you can pass to "set_ftrace_filter" or
Expand Down Expand Up @@ -316,23 +318,23 @@ The above is mostly meaningful for kernel developers.
The rest is the same as the 'trace' file.


iter_ctrl
---------
trace_options
-------------

The iter_ctrl file is used to control what gets printed in the trace
The trace_options file is used to control what gets printed in the trace
output. To see what is available, simply cat the file:

cat /debug/tracing/iter_ctrl
cat /debug/tracing/trace_options
print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
noblock nostacktrace nosched-tree
noblock nostacktrace nosched-tree nouserstacktrace nosym-userobj

To disable one of the options, echo in the option prepended with "no".

echo noprint-parent > /debug/tracing/iter_ctrl
echo noprint-parent > /debug/tracing/trace_options

To enable an option, leave off the "no".

echo sym-offset > /debug/tracing/iter_ctrl
echo sym-offset > /debug/tracing/trace_options

Here are the available options:

Expand Down Expand Up @@ -378,6 +380,20 @@ Here are the available options:
When a trace is recorded, so is the stack of functions.
This allows for back traces of trace sites.

userstacktrace - This option changes the trace.
It records a stacktrace of the current userspace thread.

sym-userobj - when user stacktrace are enabled, look up which object the
address belongs to, and print a relative address
This is especially useful when ASLR is on, otherwise you don't
get a chance to resolve the address to object/file/line after the app is no
longer running

The lookup is performed when you read trace,trace_pipe,latency_trace. Example:

a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]

sched-tree - TBD (any users??)


Expand Down Expand Up @@ -1059,6 +1075,83 @@ For simple one time traces, the above is sufficent. For anything else,
a search through /proc/mounts may be needed to find where the debugfs
file-system is mounted.


Single thread tracing
---------------------

By writing into /debug/tracing/set_ftrace_pid you can trace a
single thread. For example:

# cat /debug/tracing/set_ftrace_pid
no pid
# echo 3111 > /debug/tracing/set_ftrace_pid
# cat /debug/tracing/set_ftrace_pid
3111
# echo function > /debug/tracing/current_tracer
# cat /debug/tracing/trace | head
# tracer: function
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |
yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return
yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll
yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll
# echo -1 > /debug/tracing/set_ftrace_pid
# cat /debug/tracing/trace |head
# tracer: function
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |
##### CPU 3 buffer started ####
yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait
yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry
yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry
yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit
yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit

If you want to trace a function when executing, you could use
something like this simple program:

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int main (int argc, char **argv)
{
if (argc < 1)
exit(-1);

if (fork() > 0) {
int fd, ffd;
char line[64];
int s;

ffd = open("/debug/tracing/current_tracer", O_WRONLY);
if (ffd < 0)
exit(-1);
write(ffd, "nop", 3);

fd = open("/debug/tracing/set_ftrace_pid", O_WRONLY);
s = sprintf(line, "%d\n", getpid());
write(fd, line, s);

write(ffd, "function", 8);

close(fd);
close(ffd);

execvp(argv[1], argv+1);
}

return 0;
}

dynamic ftrace
--------------

Expand Down Expand Up @@ -1158,7 +1251,11 @@ These are the only wild cards which are supported.

<match>*<match> will not work.

# echo hrtimer_* > /debug/tracing/set_ftrace_filter
Note: It is better to use quotes to enclose the wild cards, otherwise
the shell may expand the parameters into names of files in the local
directory.

# echo 'hrtimer_*' > /debug/tracing/set_ftrace_filter

Produces:

Expand Down Expand Up @@ -1213,7 +1310,7 @@ Again, now we want to append.
# echo sys_nanosleep > /debug/tracing/set_ftrace_filter
# cat /debug/tracing/set_ftrace_filter
sys_nanosleep
# echo hrtimer_* >> /debug/tracing/set_ftrace_filter
# echo 'hrtimer_*' >> /debug/tracing/set_ftrace_filter
# cat /debug/tracing/set_ftrace_filter
hrtimer_run_queues
hrtimer_run_pending
Expand Down Expand Up @@ -1299,41 +1396,29 @@ trace entries
-------------

Having too much or not enough data can be troublesome in diagnosing
an issue in the kernel. The file trace_entries is used to modify
an issue in the kernel. The file buffer_size_kb is used to modify
the size of the internal trace buffers. The number listed
is the number of entries that can be recorded per CPU. To know
the full size, multiply the number of possible CPUS with the
number of entries.

# cat /debug/tracing/trace_entries
65620
# cat /debug/tracing/buffer_size_kb
1408 (units kilobytes)

Note, to modify this, you must have tracing completely disabled. To do that,
echo "nop" into the current_tracer. If the current_tracer is not set
to "nop", an EINVAL error will be returned.

# echo nop > /debug/tracing/current_tracer
# echo 100000 > /debug/tracing/trace_entries
# cat /debug/tracing/trace_entries
100045


Notice that we echoed in 100,000 but the size is 100,045. The entries
are held in individual pages. It allocates the number of pages it takes
to fulfill the request. If more entries may fit on the last page
then they will be added.

# echo 1 > /debug/tracing/trace_entries
# cat /debug/tracing/trace_entries
85

This shows us that 85 entries can fit in a single page.
# echo 10000 > /debug/tracing/buffer_size_kb
# cat /debug/tracing/buffer_size_kb
10000 (units kilobytes)

The number of pages which will be allocated is limited to a percentage
of available memory. Allocating too much will produce an error.

# echo 1000000000000 > /debug/tracing/trace_entries
# echo 1000000000000 > /debug/tracing/buffer_size_kb
-bash: echo: write error: Cannot allocate memory
# cat /debug/tracing/trace_entries
# cat /debug/tracing/buffer_size_kb
85

8 changes: 8 additions & 0 deletions Documentation/kernel-parameters.txt
Original file line number Diff line number Diff line change
Expand Up @@ -750,6 +750,14 @@ and is between 256 and 4096 characters. It is defined in the file
parameter will force ia64_sal_cache_flush to call
ia64_pal_cache_flush instead of SAL_CACHE_FLUSH.

ftrace=[tracer]
[ftrace] will set and start the specified tracer
as early as possible in order to facilitate early
boot debugging.

ftrace_dump_on_oops
[ftrace] will dump the trace buffers on oops.

gamecon.map[2|3]=
[HW,JOY] Multisystem joystick and NES/SNES/PSX pad
support via parallel port (up to 5 devices per port)
Expand Down
51 changes: 33 additions & 18 deletions Documentation/lockstat.txt
Original file line number Diff line number Diff line change
Expand Up @@ -71,35 +71,50 @@ Look at the current lock statistics:

# less /proc/lock_stat

01 lock_stat version 0.2
01 lock_stat version 0.3
02 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
03 class name con-bounces contentions waittime-min waittime-max waittime-total acq-bounces acquisitions holdtime-min holdtime-max holdtime-total
04 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
05
06 &inode->i_data.tree_lock-W: 15 21657 0.18 1093295.30 11547131054.85 58 10415 0.16 87.51 6387.60
07 &inode->i_data.tree_lock-R: 0 0 0.00 0.00 0.00 23302 231198 0.25 8.45 98023.38
08 --------------------------
09 &inode->i_data.tree_lock 0 [<ffffffff8027c08f>] add_to_page_cache+0x5f/0x190
10
11 ...............................................................................................................................................................................................
12
13 dcache_lock: 1037 1161 0.38 45.32 774.51 6611 243371 0.15 306.48 77387.24
14 -----------
15 dcache_lock 180 [<ffffffff802c0d7e>] sys_getcwd+0x11e/0x230
16 dcache_lock 165 [<ffffffff802c002a>] d_alloc+0x15a/0x210
17 dcache_lock 33 [<ffffffff8035818d>] _atomic_dec_and_lock+0x4d/0x70
18 dcache_lock 1 [<ffffffff802beef8>] shrink_dcache_parent+0x18/0x130
06 &mm->mmap_sem-W: 233 538 18446744073708 22924.27 607243.51 1342 45806 1.71 8595.89 1180582.34
07 &mm->mmap_sem-R: 205 587 18446744073708 28403.36 731975.00 1940 412426 0.58 187825.45 6307502.88
08 ---------------
09 &mm->mmap_sem 487 [<ffffffff8053491f>] do_page_fault+0x466/0x928
10 &mm->mmap_sem 179 [<ffffffff802a6200>] sys_mprotect+0xcd/0x21d
11 &mm->mmap_sem 279 [<ffffffff80210a57>] sys_mmap+0x75/0xce
12 &mm->mmap_sem 76 [<ffffffff802a490b>] sys_munmap+0x32/0x59
13 ---------------
14 &mm->mmap_sem 270 [<ffffffff80210a57>] sys_mmap+0x75/0xce
15 &mm->mmap_sem 431 [<ffffffff8053491f>] do_page_fault+0x466/0x928
16 &mm->mmap_sem 138 [<ffffffff802a490b>] sys_munmap+0x32/0x59
17 &mm->mmap_sem 145 [<ffffffff802a6200>] sys_mprotect+0xcd/0x21d
18
19 ...............................................................................................................................................................................................
20
21 dcache_lock: 621 623 0.52 118.26 1053.02 6745 91930 0.29 316.29 118423.41
22 -----------
23 dcache_lock 179 [<ffffffff80378274>] _atomic_dec_and_lock+0x34/0x54
24 dcache_lock 113 [<ffffffff802cc17b>] d_alloc+0x19a/0x1eb
25 dcache_lock 99 [<ffffffff802ca0dc>] d_rehash+0x1b/0x44
26 dcache_lock 104 [<ffffffff802cbca0>] d_instantiate+0x36/0x8a
27 -----------
28 dcache_lock 192 [<ffffffff80378274>] _atomic_dec_and_lock+0x34/0x54
29 dcache_lock 98 [<ffffffff802ca0dc>] d_rehash+0x1b/0x44
30 dcache_lock 72 [<ffffffff802cc17b>] d_alloc+0x19a/0x1eb
31 dcache_lock 112 [<ffffffff802cbca0>] d_instantiate+0x36/0x8a

This excerpt shows the first two lock class statistics. Line 01 shows the
output version - each time the format changes this will be updated. Line 02-04
show the header with column descriptions. Lines 05-10 and 13-18 show the actual
show the header with column descriptions. Lines 05-18 and 20-31 show the actual
statistics. These statistics come in two parts; the actual stats separated by a
short separator (line 08, 14) from the contention points.
short separator (line 08, 13) from the contention points.

The first lock (05-10) is a read/write lock, and shows two lines above the
The first lock (05-18) is a read/write lock, and shows two lines above the
short separator. The contention points don't match the column descriptors,
they have two: contentions and [<IP>] symbol.
they have two: contentions and [<IP>] symbol. The second set of contention
points are the points we're contending with.

The integer part of the time values is in us.

View the top contending locks:

Expand Down
29 changes: 24 additions & 5 deletions Documentation/markers.txt
Original file line number Diff line number Diff line change
Expand Up @@ -51,11 +51,16 @@ to call) for the specific marker through marker_probe_register() and can be
activated by calling marker_arm(). Marker deactivation can be done by calling
marker_disarm() as many times as marker_arm() has been called. Removing a probe
is done through marker_probe_unregister(); it will disarm the probe.
marker_synchronize_unregister() must be called before the end of the module exit
function to make sure there is no caller left using the probe. This, and the
fact that preemption is disabled around the probe call, make sure that probe
removal and module unload are safe. See the "Probe example" section below for a
sample probe module.

marker_synchronize_unregister() must be called between probe unregistration and
the first occurrence of
- the end of module exit function,
to make sure there is no caller left using the probe;
- the free of any resource used by the probes,
to make sure the probes wont be accessing invalid data.
This, and the fact that preemption is disabled around the probe call, make sure
that probe removal and module unload are safe. See the "Probe example" section
below for a sample probe module.

The marker mechanism supports inserting multiple instances of the same marker.
Markers can be put in inline functions, inlined static functions, and
Expand All @@ -70,6 +75,20 @@ a printk warning which identifies the inconsistency:

"Format mismatch for probe probe_name (format), marker (format)"

Another way to use markers is to simply define the marker without generating any
function call to actually call into the marker. This is useful in combination
with tracepoint probes in a scheme like this :

void probe_tracepoint_name(unsigned int arg1, struct task_struct *tsk);

DEFINE_MARKER_TP(marker_eventname, tracepoint_name, probe_tracepoint_name,
"arg1 %u pid %d");

notrace void probe_tracepoint_name(unsigned int arg1, struct task_struct *tsk)
{
struct marker *marker = &GET_MARKER(kernel_irq_entry);
/* write data to trace buffers ... */
}

* Probe / marker example

Expand Down
Loading

0 comments on commit 968ea6d

Please sign in to comment.