Skip to content

fuweijie/Paper-on-Large-scale-Machine-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 

Repository files navigation

Paper-on-Large-scale-Machine-Learning (LML) [Awesome]

This page is organized based on the following paper, and please refer the paper for more details.

A Survey on Large-Scale Machine Learning, [Arxiv], [IEEE TKDE].

If you want to contribute to this list, feel free to pull a request. If you find any representative papers are missing or need further discussion, please contact us through email at fwj.edu@gmail.com.

We review LML according to three computational perspectives:

Model Simplification, which reduces Computational Complexities by simplifying predictive models;

Optimization Approximation, which enhances Computational Efficiency by designing better optimization algorithms;

Computation Parallelism, which improves Computational Capabilities by scheduling multiple computing devices.

drawing

Related Surveys

  • Efficient machine learning for big data: A review,
    • O. Y. Al-Jarrah, P. D. Yoo, S. Muhaidat, et al., Big Data Research, vol. 2, no. 3, pp. 87–93, 2015.
  • Optimization methods for large-scale machine learning
    • L. Bottou, F. E. Curtis, and J. Nocedal, SIAM Review, vol. 60, no. 2, pp. 223–311, 2018.
  • Big data analytics: a survey
    • C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos, Journal of Big data, vol. 2, no. 1, p. 21, 2015.
  • A survey of open source tools for machine learning with big data in the hadoop ecosystem
    • S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, Journal of Big Data, vol. 2, no. 1, p. 24, 2015.
  • A survey of optimization methods from a machine learning perspective
    • S. Sun, Z. Cao, H. Zhu, and J. Zhao, IEEE Trans on Cybernetics, 2019.

Model Simplification.

Kernel-based Models

  • Sampling methods for the nystrom method
    • S. Kumar, M. Mohri, and A. Talwalkar, JMLR, vol. 13, no. Apr, pp. 981–1006, 2012.
  • Nystrom method vs random fourier features: A theoretical and empirical comparison
    • T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou, NeurIPS, 2012, pp. 476–484.
  • Scaling up graph-based semisupervised learning via prototype vector machine
    • K. Zhang, L. Lan, J. T. Kwok, S. Vucetic, and B. Parvin, IEEE TNNLS, vol. 26, no. 3, pp. 444–457, 2015.
  • Sampling with minimum sum of squared similarities for nystrom-based large scale spectral clustering
    • D. Bouneffouf and I. Birol, IJCAI, 2015, pp. 2313–2319.
  • A novel greedy algorithm for nystrom approximation
    • A. Farahat, A. Ghodsi, and M. Kamel, AISTATS, 2011, pp. 269–277.
  • Improved nystrom low-rank approximation and error analysis
    • K. Zhang, I. W. Tsang, and J. T. Kwok, ICML, 2008, pp. 1232–1239.
  • A randomized algorithm for the decomposition of matrices
    • P.-G. Martinsson, et al., Applied and Computational Harmonic Analysis, vol. 30, no. 1, pp. 47–68, 2011.
  • Randomized sketches for kernels: Fast and optimal nonparametric regression
    • Y. Yang, M. Pilanci, M. J. Wainwright et al., The Annals of Statistics, vol. 45, no. 3, pp. 991–1023, 2017.

Graph-based Models

  • Fast knn graph construction with locality sensitive hashing
    • Y.-M. Zhang, K. Huang, G. Geng, and C.-L. Liu, ECML PKDD, 2013, pp. 660–674.
  • Scalable k-nn graph construction for visual descriptors
    • J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, CVPR, 2012, pp. 1106–1113.
  • Fast approximate k nn graph construction for high dimensional data via recursive lanczos bisection
    • J. Chen, H. R. Fang, and Y. Saad, JMLR, vol. 10, no. 5, pp. 1989–2012, 2009.
  • Locally optimized product quantization for approximate nearest neighbor search
    • Y. Kalantidis and Y. Avrithis, CVPR, 2014, pp. 2321–2328.
  • Large graph construction for scalable semi-supervised learning
    • W. Liu, J. He, and S.-F. Chang, ICML, 2010, pp. 679–686.
  • FLAG: Faster learning on anchor graph with label predictor optimization
    • W. Fu, M. Wang, S. Hao, and T. Mu, IEEE TBD, no. 1, pp. 1–1, 2017.
  • Learning on big graph: Label inference and regularization with anchor hierarch
    • M. Wang, W. Fu, S. Hao, H. Liu, and X. Wu, IEEE TKDE, vol. 29, no. 5, pp. 1101–1114, 2017.
  • Scalable semisupervised learning by efficient anchor graph regularization
    • M. Wang, W. Fu, S. Hao, D. Tao, and X. Wu, IEEE TKDE, vol. 28, no. 7, pp. 1864–1877, 2016.

Deep Models

  • Mobilenets: Efficient convolutional neural networks for mobile vision applications
    • A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, et al., arXiv preprint arXiv:1704.04861, 2017.
  • Rigid-motion scattering for image classification
    • L. Sifre and S. Mallat, Ph. D. thesis, 2014.
  • Going deeper with convolutions
    • C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., CVPR, 2015, pp. 1–9.
  • Shufflenet: An extremely efficient convolutional neural network for mobile devices
    • X. Zhang, X. Zhou, M. Lin, and J. Sun, CVPR, 2018, pp. 6848–6856.
  • Rethinking the inception architecture for computer vision
    • C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, CVPR, 2016, pp. 2818–2826.
  • Multi-scale context aggregation by dilated convolutions
    • F. Yu and V. Koltun, ICLR, 2016.
  • Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems
    • S. S. Liew, M. Khalil-Hani, and R. Bakhteri, Neurocomputing, vol. 216, pp. 718–734, 2016.
  • Addernet: Do we really need multiplications in deep learning?
    • H. Chen, Y. Wang, C. Xu, B. Shi, C. Xu, Q. Tian, and C. Xu, arXiv preprint arXiv:1912.13200, 2019.

Tree-based Models

  • Fast and balanced: Efficient label tree learning for large scale object recognition
    • J. Deng, S. Satheesh, A. C. Berg, and F. Li, NeurIPS, 2011, pp. 567–575.
  • Xgboost: A scalable tree boosting system
    • T. Chen and C. Guestrin, SIGKDD, 2016, pp. 785–794.
  • Lightgbm: A highly efficient gradient boosting decision tree
    • G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.- Y. Liu, NeurIPS, 2017, pp. 3146–3154.
  • Random forests
    • L. Breiman, Machine learning, vol. 45, no. 1, pp.5–32, 2001.
  • Xgboost: A scalable tree boosting system
    • T. Chen and C. Guestrin, SIGKDD, 2016, pp. 785–794.
  • A streaming parallel decision tree algorithm
    • Y. Ben-Haim and E. Tom-Tov, JMLR, vol. 11, no. 2, 2010.

Optimization Approximation.

For Mini-batch Gradient Descent

  • Variance reduction in sgd by distributed importance samplin
    • G. Alain, A. Lamb, C. Sankar, A. Courville, and Y. Bengio, arXiv preprint arXiv:1511.06481, 2015.
  • Accurate, large minibatch sgd: Training imagenet in 1 hour
    • P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, et al., arXiv preprint arXiv:1706.02677, 2017.
  • Accelerating stochastic gradient descent using predictive variance reduction
    • R. Johnson and T. Zhang, NeurIPS, 2013, pp. 315–323.
  • Gradient methods for minimizing composite functions
    • Y. Nesterov, Mathematical Programming, vol. 140, no. 1, pp. 125–161, 2013.
  • On the momentum term in gradient descent learning algorithms
    • N. Qian, Neural networks, vol. 12, no. 1, pp. 145–151, 1999.
  • Minimizing finite sums with the stochastic average gradient
    • M. Schmidt, N. Le Roux, and F. Bach, Mathematical Programming, vol. 162, no. 1-2, pp. 83–112, 2017.
  • A stochastic quasi-newton method for large-scale optimization
    • R. H. Byrd, S. L. Hansen, et al., SIAM Journal on Optimization, vol. 26, no. 2, pp. 1008–1031, 2016.
  • Lsd-slam: Large-scale direct monocular slam
    • J. Engel, T. Schops, and D. Cremers, ECCV, 2014, pp. 834–849.
  • On optimization methods for deep learning
    • Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, ICML, 2011, pp. 265–272.
  • Towards optimal one pass large scale learning with averaged stochastic gradient descent
    • W. Xu, arXiv preprint arXiv:1107.2490, 2011.
  • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer, JMLR, vol. 12, no. Jul, pp. 2121–2159, 2011.
  • Adam: A method for stochastic optimization
    • D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980, 2014.
  • Adadelta: an adaptive learning rate method
    • M. D. Zeiler, arXiv preprint arXiv:1212.5701, 2012.

For Coordinate Gradient Descent

  • Coordinate descent method for large-scale l2-loss linear support vector machines
    • K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, JMLR, vol. 9, no. Jul, pp. 1369–1398, 2008.
  • A dual coordinate descent method for large-scale linear svm
    • C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan, ICML, 2008, pp. 408–415.
  • Nearest neighbor based greedy coordinate descent
    • I. S. Dhillon, P. K. Ravikumar, and A. Tewari, NeurIPS, 2011, pp. 2160–2168.
  • Coordinate descent converges faster with the gauss-southwell rule than random selection
    • J. Nutini, M. Schmidt, I. Laradji, M. Friedlander, and H. Koepke, ICML, 2015, pp. 1632–1641.
  • Efficient accelerated coordinate descent methods and faster algorithms for solving linear systems
    • Y. T. Lee and A. Sidford, in IEEE FOCS, 2013, pp. 147–156.
  • Efficiency of coordinate descent methods on hugescale optimization problems
    • Y. Nesterov, SIAM Journal on Optimization, vol. 22, no. 2, pp. 341–362, 2012.
  • A fast iterative shrinkage-thresholding algorithm for linear inverse problem
    • A. Beck and M. Teboulle, SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183–202, 2009.
  • An accelerated proximal coordinate gradient method
    • Q. Lin, Z. Lu, and L. Xiao, NeurIPS, 2014, pp. 3059–3067.
  • Accelerated proximal gradient methods for nonconvex programming
    • H. Li and Z. Lin, NeurIPS, 2015, pp. 379–387.
  • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, et al., Foundations and Trends R in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

For Numerical Integration with MCMC

  • Bayesian learning via stochastic gradient langevin dynamics
    • M. Welling and Y. W. Teh, ICML, 2011, pp. 681–688.
  • Bayesian posterior sampling via stochastic gradient fisher scoring
    • S. Ahn, A. Korattikara, and M. Welling, arXiv preprint arXiv:1206.6380, 2012.
  • Stochastic gradient hamiltonian monte carlo
    • T. Chen, E. Fox, and C. Guestrin, ICML, 2014, pp. 1683–1691.
  • Stochastic gradient riemannian langevin dynamics on the probability simplex
    • S. Patterson and Y. W. Teh, NeurIPS, 2013, pp. 3102–3110.
  • A complete recipe for stochastic gradient mcmc
    • Y.-A. Ma, T. Chen, and E. Fox, NeurIPS, 2015, pp. 2917–2925.

Computation Parallelism.

For Multi-core Machines

  • Parallel dual coordinate descent method for large-scale linear classification in multi-core environments
    • W.-L. Chiang, M.-C. Lee, and C.-J. Lin, SIGKDD, 2016, pp. 1485–1494.
  • A fast parallel stochastic gradient method for matrix factorization in shared memory systems
    • W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin, ACM TIST, vol. 6, no. 1, pp. 1–24, 2015.
  • The shogun machine learning toolbox
    • S. Sonnenburg, S. Henschel, C. Widmer, J. Behr, A. Zien, et al., JMLR, vol. 11, no. 6, pp. 1799–1802, 2010.
  • Hogwild: A lock-free approach to parallelizing stochastic gradient descent
    • B. Recht, C. Re, S. Wright, and F. Niu, NeurIPS, 2011, pp. 693–701.
  • Theano: Deep learning on gpus with python
    • J. Bergstra, F. Bastien, O. Breuleux, et al., NeurIPS, vol. 3. Citeseer, 2011, pp. 1–48.
  • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia, E. Shelhamer, J. Donahue, Set al., ACM MM, 2014, pp. 675–678.
  • Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems
    • T. Chen, M. Li, Y. Li, M. Lin, et al., arXiv preprint arXiv:1512.01274, 2015.
  • Graphchi: Large-scale graph computation on just a PC
    • A. Kyrola, G. Blelloch, and C. Guestrin, OSDI, 2012, pp. 31–46.
  • X-stream: Edgecentric graph processing using streaming partitions
    • A. Roy, I. Mihailovic, and W. Zwaenepoel, SOSP, 2013, pp. 472–488.
  • Gridgraph: Large-scale graph processing on a single machine using 2-level hierarchical partitioning
    • X. Zhu, W. Han, and W. Chen, USENIX ATC, 2015, pp. 375–386.
  • vdnn: Virtualized deep neural networks for scalable, memory-efficient neural network design
    • M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler, MICRO. IEEE, 2016, pp. 1–13.

For Multi-machine Clusters

  • Mapreduce: simplified data processing on large clusters
    • J. Dean and S. Ghemawat, Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.
  • Iterative mapreduce for large scale machine learning
    • J. Rosen, N. Polyzotis, V. Borkar, et al., arXiv preprint arXiv:1303.3517, 2013.
  • Hybrid parallelization strategies for large-scale machine learning in systemml
    • M. Boehm, S. Tatikonda, B. Reinwald, et al., VLDB, vol. 7, no. 7, pp. 553–564, 2014.
  • Spark: cluster computing with working sets
    • M. Zaharia, et al., in Proceedings of Hot Topics in Cloud Computing, 2010, pp. 10–10.
  • Mllib: machine learning in apache spark
    • X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks, et al., JMLR, vol. 17, no. 34, pp. 1–7, 2016.
  • Pregel: a system for large-scale graph processing
    • G. Malewicz, M. H. Austern, A. J. Bik, et al., SIGMOD, 2010, pp. 135–146.
  • Distributed graphlab: a framework for machine learning and data mining in the cloud
    • Y. Low, D. Bickson, J. E. Gonzalez, et al., VLDB, vol. 5, no. 8, 2012, pp. 716–727.
  • Powergraph: distributed graph-parallel computation on natural graphs
    • J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, OSDI, vol. 12, no. 1, 2012, p. 2.
  • Powerlyra: Differentiated graph computation and partitioning on skewed graphs
    • R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen, ACM TOPC, vol. 5, no. 3, pp. 1–39, 2019.
  • Large scale distributed deep networks
    • J. Dean, G. Corrado, R. Monga, K. Chen, et al., NeurIPS, 2012, pp. 1223–1231.
  • Scaling distributed machine learning with the parameter server
    • M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, et al., vol. 14, 2014, pp. 583–598.
  • Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems
    • T. Chen, M. Li, Y. Li, M. Lin, N. Wang, et al., arXiv preprint arXiv:1512.01274, 2015.
  • Dimboost: Boosting gradient boosting decision tree to higher dimension
    • J. Jiang, B. Cui, C. Zhang, and F. Fu, ICDM, 2018, pp. 1363–1376.
  • Petuum: A new platform for distributed machine learning on big data
    • E. P. Xing, Q. Ho, W. Dai, et al., IEEE TBD, vol. 1, no. 2, pp. 49–67, 2015.
  • Xgboost: A scalable tree boosting system
    • T. Chen and C. Guestrin, SIGKDD, 2016, pp. 785–794.
  • Lightgbm: A highly efficient gradient boosting decision tree
    • G. Ke, Q. Meng, T. Finley, et al, NeurIPS, 2017, pp. 3146–3154.
  • Bandwidth optimal all-reduce algorithms for clusters of workstations
    • P. Patarasuk and X. Yuan, Elsevier JPDC, vol. 69, no. 2, pp. 117–124, 2009.
  • Horovod: fast and easy distributed deep learning in tensorflow
    • A. Sergeev and M. Del Balso, arXiv preprint arXiv:1802.05799, 2018.
  • Accurate, large minibatch sgd: Training imagenet in 1 hour
    • P. Goyal, P. Dollar, R. Girshick, et al., arXiv preprint arXiv:1706.02677, 2017.

Hybrid Collaboration.

  • 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech dnns
    • F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, INTERSPEECH, 2014.
  • Qsgd: Communication-efficient sgd via gradient quantization and encoding
    • D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, NeurIPS, 2017, pp. 1709–1720.
  • Terngrad: Ternary gradients to reduce communication in distributed deep learning
    • W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, NeurIPS, 2017, pp. 1509–1519.
  • Deep gradient compression: Reducing the communication bandwidth for distributed training
    • Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, arXiv preprint arXiv:1712.01887, 2017.
  • Sketchml: Accelerating distributed machine learning with data sketches
    • J. Jiang, F. Fu, T. Yang, and B. Cui, SIGMOD, 2018, pp. 1269–1284.
  • Zipml: Training linear models with end-to-end low precision, and a little bit of deep learning
    • H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang, ICML, 2017, pp. 4035–4043.
  • Slow learners are fast
    • J. Langford, A. Smola, and M. Zinkevich, arXiv preprint arXiv:0911.0491, 2009.
  • Distributed delayed stochastic optimization
    • A. Agarwal and J. C. Duchi, NeurIPS, 2011, pp. 873–881.
  • Communication-efficient distributed dual coordinate ascent
    • M. Jaggi, V. Smith, M. Takac, Jet al., NeurIPS, 2014, pp. 3068–3076.
  • Distributed coordinate descent method for learning with big data
    • P. Richtarik et al., JMLR, vol. 17, no. 1, pp. 2657–2681, 2016.
  • Deep learning with elastic averaging sgd
    • L. Y. Zhang S, Choromanska AE, NeurIPS, 2015, pp. 685–693.
  • Parallelized stochastic gradient descent
    • M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, NeurIPS, 2010, pp. 2595–2603.
  • Asynchronous stochastic gradient descent with delay compensation
    • S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu, ICML, 2017, pp. 4120–4129.
  • Doublesqueeze: Parallel stochastic gradient descent with double-pass error-compensated compression
    • H. Tang, X. Lian, T. Zhang, and J. Liu, arXiv preprint arXiv:1905.05957, 2019.
  • Error compensated quantized sgd and its applications to large-scale distributed optimization
    • J. Wu, W. Huang, J. Huang, and T. Zhang, arXiv preprint arXiv:1806.08054, 2018.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published