Skip to content

Commit

Permalink
Merge pull request 3b1b#1598 from YishiMichael/master
Browse files Browse the repository at this point in the history
Support the elliptical arc command for SVGMobject
  • Loading branch information
3b1b committed Aug 9, 2021
2 parents eb315da + ec620fa commit f92211b
Showing 1 changed file with 131 additions and 7 deletions.
138 changes: 131 additions & 7 deletions manimlib/mobject/svg/svg_mobject.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from manimlib.constants import ORIGIN, UP, DOWN, LEFT, RIGHT
from manimlib.constants import BLACK
from manimlib.constants import WHITE
from manimlib.constants import DEGREES, PI

from manimlib.mobject.geometry import Circle
from manimlib.mobject.geometry import Rectangle
Expand All @@ -21,6 +22,7 @@
from manimlib.utils.config_ops import digest_config
from manimlib.utils.directories import get_mobject_data_dir
from manimlib.utils.images import get_full_vector_image_path
from manimlib.utils.simple_functions import clip


def string_to_numbers(num_string):
Expand Down Expand Up @@ -367,10 +369,18 @@ def get_commands_and_coord_strings(self):
def handle_command(self, command, new_points):
if command.islower():
# Treat it as a relative command
new_points += self.relative_point
if command == "a":
# Only the last `self.dim` columns refer to points
new_points[:, -self.dim:] += self.relative_point
else:
new_points += self.relative_point

func, n_points = self.command_to_function(command)
func(*new_points[:n_points])
command_points = new_points[:n_points]
if command.upper() == "A":
func(*command_points[0][:-self.dim], np.array(command_points[0][-self.dim:]))
else:
func(*command_points)
leftover_points = new_points[n_points:]

# Recursively handle the rest of the points
Expand All @@ -379,7 +389,10 @@ def handle_command(self, command, new_points):
# Treat following points as relative line coordinates
command = "l"
if command.islower():
leftover_points -= self.relative_point
if command == "a":
leftover_points[:, -self.dim:] -= self.relative_point
else:
leftover_points -= self.relative_point
self.relative_point = self.get_last_point()
self.handle_command(command, leftover_points)
else:
Expand All @@ -388,20 +401,131 @@ def handle_command(self, command, new_points):

def string_to_points(self, command, coord_string):
numbers = string_to_numbers(coord_string)
if command.upper() == "A":
# Only the last `self.dim` columns refer to points
# Each "point" returned here has a size of `(5 + self.dim)`
params = np.array(numbers).reshape((-1, 7))
result = np.zeros((params.shape[0], 5 + self.dim))
result[:, :7] = params
return result
if command.upper() in ["H", "V"]:
i = {"H": 0, "V": 1}[command.upper()]
xy = np.zeros((len(numbers), 2))
xy[:, i] = numbers
if command.isupper():
xy[:, 1 - i] = self.relative_point[1 - i]
elif command.upper() == "A":
raise Exception("Not implemented")
else:
xy = np.array(numbers).reshape((len(numbers) // 2, 2))
xy = np.array(numbers).reshape((-1, 2))
result = np.zeros((xy.shape[0], self.dim))
result[:, :2] = xy
return result

def add_elliptical_arc_to(self, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, point):
"""
In fact, this method only suits 2d VMobjects.
"""
def close_to_zero(a, threshold=1e-5):
return abs(a) < threshold

def solve_2d_linear_equation(a, b, c):
"""
Using Crammer's rule to solve the linear equation `[a b]x = c`
where `a`, `b` and `c` are all 2d vectors.
"""
def det(a, b):
return a[0] * b[1] - a[1] * b[0]
d = det(a, b)
if close_to_zero(d):
raise Exception("Cannot handle 0 determinant.")
return [det(c, b) / d, det(a, c) / d]

def get_arc_center_and_angles(x0, y0, rx, ry, phi, large_arc_flag, sweep_flag, x1, y1):
"""
The parameter functions of an ellipse rotated `phi` radians counterclockwise is (on `alpha`):
x = cx + rx * cos(alpha) * cos(phi) + ry * sin(alpha) * sin(phi),
y = cy + rx * cos(alpha) * sin(phi) - ry * sin(alpha) * cos(phi).
Now we have two points sitting on the ellipse: `(x0, y0)`, `(x1, y1)`, corresponding to 4 equations,
and we want to hunt for 4 variables: `cx`, `cy`, `alpha0` and `alpha_1`.
Let `d_alpha = alpha1 - alpha0`, then:
if `sweep_flag = 0` and `large_arc_flag = 1`, then `PI <= d_alpha < 2 * PI`;
if `sweep_flag = 0` and `large_arc_flag = 0`, then `0 < d_alpha <= PI`;
if `sweep_flag = 1` and `large_arc_flag = 0`, then `-PI <= d_alpha < 0`;
if `sweep_flag = 1` and `large_arc_flag = 1`, then `-2 * PI < d_alpha <= -PI`.
"""
xd = x1 - x0
yd = y1 - y0
if close_to_zero(xd) and close_to_zero(yd):
raise Exception("Cannot find arc center since the start point and the end point meet.")
# Find `p = cos(alpha1) - cos(alpha0)`, `q = sin(alpha1) - sin(alpha0)`
eq0 = [rx * np.cos(phi), ry * np.sin(phi), xd]
eq1 = [rx * np.sin(phi), -ry * np.cos(phi), yd]
p, q = solve_2d_linear_equation(*zip(eq0, eq1))
# Find `s = (alpha1 - alpha0) / 2`, `t = (alpha1 + alpha0) / 2`
# If `sin(s) = 0`, this requires `p = q = 0`,
# implying `xd = yd = 0`, which is impossible.
sin_s = (p ** 2 + q ** 2) ** 0.5 / 2
if sweep_flag:
sin_s = -sin_s
sin_s = clip(sin_s, -1, 1)
s = np.arcsin(sin_s)
if large_arc_flag:
if not sweep_flag:
s = PI - s
else:
s = -PI - s
sin_t = -p / (2 * sin_s)
cos_t = q / (2 * sin_s)
cos_t = clip(cos_t, -1, 1)
t = np.arccos(cos_t)
if sin_t <= 0:
t = -t
# We can make sure `0 < abs(s) < PI`, `-PI <= t < PI`.
alpha0 = t - s
alpha_1 = t + s
cx = x0 - rx * np.cos(alpha0) * np.cos(phi) - ry * np.sin(alpha0) * np.sin(phi)
cy = y0 - rx * np.cos(alpha0) * np.sin(phi) + ry * np.sin(alpha0) * np.cos(phi)
return cx, cy, alpha0, alpha_1

def get_point_on_ellipse(cx, cy, rx, ry, phi, angle):
return np.array([
cx + rx * np.cos(angle) * np.cos(phi) + ry * np.sin(angle) * np.sin(phi),
cy + rx * np.cos(angle) * np.sin(phi) - ry * np.sin(angle) * np.cos(phi),
0
])

def convert_elliptical_arc_to_quadratic_bezier_curve(
cx, cy, rx, ry, phi, start_angle, end_angle, n_components=8
):
theta = (end_angle - start_angle) / n_components / 2
handles = np.array([
get_point_on_ellipse(cx, cy, rx / np.cos(theta), ry / np.cos(theta), phi, a)
for a in np.linspace(
start_angle + theta,
end_angle - theta,
n_components,
)
])
anchors = np.array([
get_point_on_ellipse(cx, cy, rx, ry, phi, a)
for a in np.linspace(
start_angle + theta * 2,
end_angle,
n_components,
)
])
return handles, anchors

phi = x_axis_rotation * DEGREES
x0, y0 = self.get_last_point()[:2]
cx, cy, start_angle, end_angle = get_arc_center_and_angles(
x0, y0, rx, ry, phi, large_arc_flag, sweep_flag, point[0], point[1]
)
handles, anchors = convert_elliptical_arc_to_quadratic_bezier_curve(
cx, cy, rx, ry, phi, start_angle, end_angle
)
for handle, anchor in zip(handles, anchors):
self.add_quadratic_bezier_curve_to(handle, anchor)

def command_to_function(self, command):
return self.get_command_to_function_map()[command.upper()]

Expand All @@ -419,7 +543,7 @@ def get_command_to_function_map(self):
"S": (self.add_smooth_cubic_curve_to, 2),
"Q": (self.add_quadratic_bezier_curve_to, 2),
"T": (self.add_smooth_curve_to, 1),
"A": (self.add_quadratic_bezier_curve_to, 2), # TODO
"A": (self.add_elliptical_arc_to, 1),
"Z": (self.close_path, 0),
}

Expand Down

0 comments on commit f92211b

Please sign in to comment.