Skip to content

Commit

Permalink
added table of converged parameters
Browse files Browse the repository at this point in the history
  • Loading branch information
katiechambe committed Apr 10, 2022
1 parent 3c038a1 commit 537adf3
Show file tree
Hide file tree
Showing 2 changed files with 105 additions and 34 deletions.
40 changes: 40 additions & 0 deletions paper/refs.bib
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,46 @@ @ARTICLE{Schonrich2010
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

@ARTICLE{Bennett2019,
author = {{Bennett}, Morgan and {Bovy}, Jo},
title = "{Vertical waves in the solar neighbourhood in Gaia DR2}",
journal = {\mnras},
keywords = {instabilities, Galaxy: disc, Galaxy: fundamental parameters, Galaxy: kinematics and dynamics, solar neighbourhood, Galaxy: structure, Astrophysics - Astrophysics of Galaxies},
year = 2019,
month = jan,
volume = {482},
number = {1},
pages = {1417-1425},
doi = {10.1093/mnras/sty2813},
archivePrefix = {arXiv},
eprint = {1809.03507},
primaryClass = {astro-ph.GA},
adsurl = {https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.1417B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}



@ARTICLE{GravityCollab2018,
author = {{Gravity Collaboration} and {Abuter}, R. and {Amorim}, A. and {Anugu}, N. and {Baub{\"o}ck}, M. and {Benisty}, M. and {Berger}, J.~P. and {Blind}, N. and {Bonnet}, H. and {Brandner}, W. and {Buron}, A. and {Collin}, C. and {Chapron}, F. and {Cl{\'e}net}, Y. and {Coud{\'e} Du Foresto}, V. and {de Zeeuw}, P.~T. and {Deen}, C. and {Delplancke-Str{\"o}bele}, F. and {Dembet}, R. and {Dexter}, J. and {Duvert}, G. and {Eckart}, A. and {Eisenhauer}, F. and {Finger}, G. and {F{\"o}rster Schreiber}, N.~M. and {F{\'e}dou}, P. and {Garcia}, P. and {Garcia Lopez}, R. and {Gao}, F. and {Gendron}, E. and {Genzel}, R. and {Gillessen}, S. and {Gordo}, P. and {Habibi}, M. and {Haubois}, X. and {Haug}, M. and {Hau{\ss}mann}, F. and {Henning}, Th. and {Hippler}, S. and {Horrobin}, M. and {Hubert}, Z. and {Hubin}, N. and {Jimenez Rosales}, A. and {Jochum}, L. and {Jocou}, K. and {Kaufer}, A. and {Kellner}, S. and {Kendrew}, S. and {Kervella}, P. and {Kok}, Y. and {Kulas}, M. and {Lacour}, S. and {Lapeyr{\`e}re}, V. and {Lazareff}, B. and {Le Bouquin}, J. -B. and {L{\'e}na}, P. and {Lippa}, M. and {Lenzen}, R. and {M{\'e}rand}, A. and {M{\"u}ler}, E. and {Neumann}, U. and {Ott}, T. and {Palanca}, L. and {Paumard}, T. and {Pasquini}, L. and {Perraut}, K. and {Perrin}, G. and {Pfuhl}, O. and {Plewa}, P.~M. and {Rabien}, S. and {Ram{\'\i}rez}, A. and {Ramos}, J. and {Rau}, C. and {Rodr{\'\i}guez-Coira}, G. and {Rohloff}, R. -R. and {Rousset}, G. and {Sanchez-Bermudez}, J. and {Scheithauer}, S. and {Sch{\"o}ller}, M. and {Schuler}, N. and {Spyromilio}, J. and {Straub}, O. and {Straubmeier}, C. and {Sturm}, E. and {Tacconi}, L.~J. and {Tristram}, K.~R.~W. and {Vincent}, F. and {von Fellenberg}, S. and {Wank}, I. and {Waisberg}, I. and {Widmann}, F. and {Wieprecht}, E. and {Wiest}, M. and {Wiezorrek}, E. and {Woillez}, J. and {Yazici}, S. and {Ziegler}, D. and {Zins}, G.},
title = "{Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole}",
journal = {\aap},
keywords = {Galaxy: center, gravitation, black hole physics, Astrophysics - Astrophysics of Galaxies, General Relativity and Quantum Cosmology, Physics - Classical Physics},
year = 2018,
month = jul,
volume = {615},
eid = {L15},
pages = {L15},
doi = {10.1051/0004-6361/201833718},
archivePrefix = {arXiv},
eprint = {1807.09409},
primaryClass = {astro-ph.GA},
adsurl = {https://ui.adsabs.harvard.edu/abs/2018A&A...615L..15G},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}



@ARTICLE{vdm2019,
author = {{van der Marel}, Roeland P. and {Fardal}, Mark A. and {Sohn}, Sangmo Tony and {Patel}, Ekta and {Besla}, Gurtina and {del Pino}, Andr{\'e}s and {Sahlmann}, Johannes and {Watkins}, Laura L.},
title = "{First Gaia Dynamics of the Andromeda System: DR2 Proper Motions, Orbits, and Rotation of M31 and M33}",
Expand Down
99 changes: 65 additions & 34 deletions paper/yellowCard_draft.tex
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@
\author{Jorge Pe\~{n}arrubia}
\affiliation{\affedinb}

\author[0000-0003-1517-3935 ]{Michael Petersen}
\author[0000-0003-1517-3935 ]{Michael S. Petersen}
\affiliation{\affparis}

\begin{abstract}
Expand Down Expand Up @@ -262,8 +262,10 @@ \subsection{Dynamical Model: The Timing Argument}
\begin{align}
r &= a \, (1-e\,\cos\eta) \label{eq:r} \\
t &= \left( \frac{a^3}{GM} \right)^{1/2}(\eta-e\,\sin\eta) \label{eq:t} \\
\vrad &= \left( \frac{GM}{a} \right)^{1/2} \frac{e\,\sin\eta}{1-e\,\cos\eta} \label{eq:vrad} \\
\vtan &= \left( \frac{GM}{a} \right)^{1/2} \frac{\sqrt{1-e^2}}{1-e\,\cos\eta} \label{eq:vtan} \quad .
\vrad &= \left( \frac{GM}{a} \right)^{1/2} \frac{e\,\sin\eta}{1-e\,\cos\eta}
\label{eq:vrad} \\
\vtan &= \left( \frac{GM}{a} \right)^{1/2} \frac{\sqrt{1-e^2}}{1-e\,\cos\eta}
\label{eq:vtan} \quad .
\end{align}
In the expressions above, $r$ is the separation between the centers of the MW
and M31 halos, the time since last pericenter, $t$, is the age of the Universe,
Expand Down Expand Up @@ -298,8 +300,10 @@ \subsection{Dynamical Model: The Timing Argument}
Then, the \textit{observed} position and velocity of M31, measured in a heliocentric
reference frame, are given by
\begin{align}
\pos{M31}{\odot} &= \pos{M31}{\mwouter} + \pos{\mwouter}{\odot} \label{eq:xoffset1}\\
\vel{M31}{\odot} &= \vel{M31}{\mwouter} + \vel{\mwouter}{\odot} \label{eq:voffset1}\quad .
\pos{M31}{\odot} &= \pos{M31}{\mwouter} + \pos{\mwouter}{\odot}
\label{eq:xoffset1}\\
\vel{M31}{\odot} &= \vel{M31}{\mwouter} + \vel{\mwouter}{\odot}
\label{eq:voffset1}\quad .
\end{align}
Here $\left|\pos{M31}{\mwouter}\right| = r$ as determined from
Equation~\ref{eq:r}, $\vel{M31}{\mwouter}$ is determined completely by the
Expand Down Expand Up @@ -331,9 +335,10 @@ \subsection{Dynamical Model: The Timing Argument}
center of mass of the outer MW halo, ``\mwdisk'' refers to a reference frame
centered at and moving with the center of the MW disk,
and $\pos{\mwdisk}{\odot}$ and $\vel{\mwdisk}{\odot}$, respectively, are
the adopted solar position and velocity in the Galaxy (the values we
adopt for $\vel{\mwdisk}{\odot}$ (shortened to $\bov_{\odot}$)
are given in Table~\ref{table:data} below).\footnote{
the adopted solar position and velocity in the Galaxy. The values we
adopt for $\pos{\mwdisk}{\odot}$ and $\vel{\mwdisk}{\odot}$
(shortened to $\boldx_{\odot}$ and $\bov_{\odot}$)
are given in Table~\ref{table:data} below.\footnote{
Note that in principle, there is also a term $\vel{\rm M31_{halo}}{\rm
M31_{disk}}$, however, there are not yet measurements of the differential
motion of the M31 disk with respect to the M31 halo, so we neglect this term.
Expand Down Expand Up @@ -363,7 +368,6 @@ \subsection{Dynamical Model: The Timing Argument}
However, it's important to note that this displacement is still significant on
scales relevent for many other MW studies
(see Section~\ref{sec:discussion-impact} for more details).
% \kc{Simulations show that the MW disk has likely moved up to 50kpc from its current location~\citep[e.g.,][]{Gomez2015,Garavito-Camargo2021b}, though such a displacement of the MW disk from the center dark matter halo has not yet been observed.}

Figure~\ref{fig:schematic} shows a schematic of these different vectors --- all
drawn in a frame that is comoving with the \mwouter\ frame --- and a rough
Expand Down Expand Up @@ -398,7 +402,8 @@ \subsection{Datasets}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The present distance and relative velocity of M31, as well as the age of the
universe (used in Equation~\ref{eq:t}), are key observables that are used to
constrain our Timing Argument model. In this paper, we consider three different compilations of data to understand how different measurements might affect the
constrain our Timing Argument model. In this paper, we consider three different
compilations of data to understand how different measurements might affect the
Timing Argument model with the addition of the travel velocity. In particular,
we consider two different M31 distance measures: an approximated distance
measure from~\cite{vdm2008}, and a more accurate Cepheid-based distance measure
Expand Down Expand Up @@ -450,8 +455,9 @@ \subsection{Datasets}
$v_{\rm rad}~[\kms]$ & $-301 \pm 1\reflabel{b}$ & $-301\pm 1\reflabel{b}$ & $-301\pm 1\reflabel{b}$ \\
$\mu_{\alpha^*}~[\muasyr]$ & $34.30\pm 8.25\reflabel{c}$ & $48.98\pm 10.47\reflabel{g}$ & $34.30\pm 8.25\reflabel{c}$ \\
$\mu_\delta~[\muasyr]$ & $-20.22 \pm 7.71$\reflabel{c} & $-36.85\pm 8.03\reflabel{g}$ & $-20.22 \pm 7.71$\reflabel{c} \\
$\bs{v}_\odot$~[\kms]& $(11.1, 251.54, 7.25)\reflabel{d}$ & $(12.9, 245.6, 7.78)\reflabel{h}$ & $(12.9, 245.6, 7.78)$ \reflabel{h}\\
$t_{\rm peri}~[\Gyr]$ & $13.75\pm 0.11\reflabel{e}$ & $13.801 \pm 0.024$ \reflabel{i} & $13.801 \pm 0.024$ \reflabel{i}\\
$\bs{x}_\odot$~[\kpc]& $(-8.29, 0, 0)\reflabel{d}$ & $(-8.122, 0, 20.8)\reflabel{h}$ & $(-8.122, 0, 20.8)\reflabel{h}$ \\
$\bs{v}_\odot$~[\kms]& $(11.1, 251.54, 7.25)\reflabel{d}$ & $(12.9, 245.6, 7.78)\reflabel{i}$ & $(12.9, 245.6, 7.78)\reflabel{i}$ \\
$t_{\rm peri}~[\Gyr]$ & $13.75\pm 0.11\reflabel{e}$ & $13.801 \pm 0.024$ \reflabel{j} & $13.801 \pm 0.024$ \reflabel{j}\\
\hline\hline
\end{tabular}
\tablerefs{$a.$ \cite{vdm2008},
Expand All @@ -461,19 +467,24 @@ \subsection{Datasets}
$e.$ \cite{Jarosik2011},
$f.$ \cite{Li2021},
$g.$ \cite{Salomon2021},\\
$h.$ \cite{Drimmel2018},
$i.$ \cite{Planck2018}}
$h.$ \cite{GravityCollab2018,Bennett2019},
$i.$ \cite{Drimmel2018},
$j.$ \cite{Planck2018}}
% \tablenotetext{a}{\cite{vdm2008}}
% \tablenotetext{b}{\cite{Li2021}}
\caption{\label{table:data}
Observational datasets used for comparison throughout analysis and their
references. Each value is measured for M31 with
respect to the sun. $D$ is the distance, $v_{\rm rad}$ is the radial velocity,
$(\mu^*_{\alpha}, \mu_{\delta})$ are proper motions in RA cosdec and Dec, and
(U$_{\rm pec}$, V$_{\rm pec}$+V$_0$, W$_{\rm pec}$) the solar motion with
respect to the Galactic center. $t_{\rm peri}$ is the time elapsed since the
last pericenter of the M31 Keplerian orbit, which in this case is the age of
the Universe.
and $(\mu^*_{\alpha}, \mu_{\delta})$ are proper motions in RA cosdec and Dec.
$\bs{x}_\odot=(x, y, z)$ and
$\bov_{\odot}=(\rm U_{\rm pec}, V_{\rm pec}+V_0, W_{\rm pec})$ are the
the position of the Sun and the solar motion with respect to the Galactic
center, with the x-axis pointing from the projection of the Sun
on the disk towards the Galactic center, and the z-axis pointing in the
direction of the North Galactic Pole.
$t_{\rm peri}$ is the time elapsed since the last pericenter of the M31
Keplerian orbit, which in this case is the age of the Universe.
}
\end{table*}

Expand All @@ -493,8 +504,8 @@ \subsection{Bayesian Inference}
Monte Carlo (MCMC) method.

In detail, we first use the four Timing Argument parameters to compute the
present-day separation between the MW and M31 halos and their relative radial and
tangential velocities as defined in Equations~\ref{eq:r}--\ref{eq:vtan}.
present-day separation between the MW and M31 halos and their relative radial
and tangential velocities as defined in Equations~\ref{eq:r}--\ref{eq:vtan}.
These velocity components represent the relative velocity M31 would have as
observed from the center of an unperturbed MW halo.
We then use the measured ``travel velocity'' of the MW disk,
Expand All @@ -509,10 +520,6 @@ \subsection{Bayesian Inference}
components given by Equations~\ref{eq:vrad}--\ref{eq:vtan} to the
three-dimensional velocity components represented by the two proper motion
components and the radial velocity of M31.
% This is necessary because the Kepler equations only provide the magnitude of the
% tangential velocity (i.e. Equation~\ref{eq:vtan}), but in order to compute
% proper motion components we must also know the exact orientation of the M31
% velocity vector.
However, we stress that this position angle has no impact on the fundamental
dynamical parameters and is only used for coordinate transformations.

Expand Down Expand Up @@ -556,7 +563,8 @@ \subsection{Bayesian Inference}
$\ln(1-e)$: $\mathcal{U}(-10,0)$ & Eccentricity (close to 1) \\
%
$\eta$: $\mathcal{U}(-\pi, \pi)$ & Eccentric anomaly\\
\multirow{2}{*}{$\alpha$: $\mathcal{U}(-\pi, \pi)$} & Position angle of M31 orbital\\
\multirow{2}{*}{$\alpha$: $\mathcal{U}(-\pi, \pi)$} & Position angle of M31
orbital\\
& plane from MW disk center\\
\hline\hline
\end{tabular}
Expand Down Expand Up @@ -600,13 +608,13 @@ \section{Results: Local group mass estimates}
}
\end{figure*}

% We use recent measurements of the present-day kinematics of M31 as observed from the solar system, updated measurements of the solar position and motion with respect to the Milky Way center, and a recent measurement of the velocity of the Milky Way disk with respect to the outer stellar halo to measure the mass of the Local Group using observed kinematics of M31.

We use a Bayesian implementation of a Timing Argument model to infer the mass of
the Local Group and the distance between M31 and the Milky Way.
Our model of the Local Group accounts for the observed travel velocity of
the Milky Way disk from~\cite{Petersen2021}, and results in new,
less-biased constraints on the mass of the Local Group.
The mean inferred parameter values and their 68\% credible regions for each
dataset are presented in Table~\ref{table:convergedparams}.

We find that our model prefers lower Local Group masses and a lower eccentricity
orbit compared to models that do not include the travel velocity of the MW disk.
Expand Down Expand Up @@ -638,6 +646,27 @@ \section{Results: Local group mass estimates}
estimates between the datasets considered, implying a LG mass $\mlg = 3.6
\pm 0.3 \times 10^{12}~\Msun$.

\begin{table*}
\begin{tabular}{lc|c|c}
\hline\hline
Parameter & \textbf{vdMG08 Dist. + HST PM} & \textbf{Cepheid Dist. + Gaia PM} & \textbf{Cepheid Dist. + HST PM}\\\hline
$\mlg$ & $3.98^{+0.6}_{-0.5}$ & $4.54^{+0.8}_{-0.6} $ & $4.05^{+0.5}_{-0.3} $ \\
$e$ & $0.92^{+0.1}_{-0.1}$ & $0.84^{+0.1}_{-0.1}$ & $0.92^{+0.1}_{-0.1} $ \\
$r$ & $777.72^{+36.6}_{-36.0}$ & $765.17^{+10.9}_{-10.9}$ & $765.44^{+10.8}_{-10.9} $ \\
$\eta$ & $-2.14^{+0.05}_{-0.04}$ & $-2.08^{+0.04}_{-0.04}$ & $-2.11^{+0.03}_{-0.03} $\\
$\alpha$ & $2.97^{+0.8}_{-0.8}$ & $1.42^{+0.6}_{-0.5} $ & $2.96^{+0.8}_{-0.8} $ \\
\hline\hline
\end{tabular}
\caption{\label{table:convergedparams}Mean inferred parameter values and the
68\% credible region of the sampled posterior region for each dataset.
Here, $\mlg$ is the mass of the Local Group, $e$ is the eccentricity of the
MW--M31 orbit, $r$ is the distance between the centers of the MW and M31
halos, $\eta$ is the eccentric anomaly (a proxy for the phase of the orbit),
and $\alpha$ is a nuisance parameter representing the angle between the
orbital plane of MW--M31 and the tangent plane located at the sky position of
M31 as seen from the center of the MW disk.}
\end{table*}


\begin{figure}[htb]
\centering
Expand All @@ -656,7 +685,8 @@ \section{Results: Local group mass estimates}
stellar tracers at different distances in~\cite{Garavito-Camargo2021b}.
\textbf{The inclusion of the travel velocity of the MW disk systematically
lowers the inferred mass and eccentricity of the Local Group} regardless of
observational dataset. A larger measured travel velocity will yield a lower mass, less radial Local Group.}
observational dataset. A larger measured travel velocity will yield a lower
mass, less radial Local Group.}
\end{figure}

% APW SAYS: I think we can remove this figure and just discuss what it shows in
Expand Down Expand Up @@ -975,8 +1005,8 @@ \section{Summary and Conclusions}
by~\cite{Petersen2021} measure an instantaneous differential ``travel velocity''
of the Milky Way disk compared to the outer stellar halo.
The travel velocity has been inferred as primarily due to the response of the
MW halo to the recent infall of the LMC, as shown in
~\cite[e.g.][]{Gomez2015,Garavito-Camargo:2019,Erkal2019,
MW halo to the recent infall of the LMC
~\cite[as shown in e.g.][]{Gomez2015,Garavito-Camargo:2019,Erkal2019,
Cunningham:2020,Petersen:2020,Garavito-Camargo2021b}.
In this study, we use the Timing Argument to infer the LG mass while
accounting for the travel velocity empirically for the first time.
Expand Down Expand Up @@ -1073,8 +1103,8 @@ \section{Summary and Conclusions}
Flatiron Institute July--August 2021.
We greatly benefitted from discussions with the other students who attended the
BADS, and received helpful input from:
Kathryn Johnston (Columbia), Alex Riley (Texas A\&M), and Martin Weinburg ()
\todo{Who else?}.
Kathryn Johnston (Columbia), Alex Riley (Texas A\&M), and Martin Weinberg
(University of Massachusetts at Amherst).
KC would like to thank Ekta Patel for sharing a collection of M31 mass
measurements from the literature.
% This work made use of the
Expand All @@ -1088,7 +1118,8 @@ \section{Summary and Conclusions}
\todo{EC}
\todo{NGC}
\todo{JP}
\todo{MP}
MSP acknowledges grant support from Segal ANR-19-CE31-0017 of the French Agence
Nationale de la Recherche (\url{https://secular-evolution.org}).

\end{acknowledgements}

Expand Down

0 comments on commit 537adf3

Please sign in to comment.