Skip to content

Commit

Permalink
Add lecture 4
Browse files Browse the repository at this point in the history
  • Loading branch information
dylanpeifer committed Feb 7, 2019
1 parent fb94c93 commit 7caa7f6
Show file tree
Hide file tree
Showing 4 changed files with 90 additions and 0 deletions.
90 changes: 90 additions & 0 deletions lecture-notes/lecture-notes.tex
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
\documentclass[a4paper,12pt]{amsart}

\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\PP}{\mathbb{P}}
Expand All @@ -17,6 +18,7 @@
-I
\end{bmatrix}}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Spec}{Spec}

\usepackage[top=1in, bottom=1in, left=1in, right=1in]{geometry}
\usepackage{amsmath, amssymb}
Expand Down Expand Up @@ -619,4 +621,92 @@ \section{Lecture 03}

The set $H$ from the above proposition is the Hilbert basis of $S_\sigma$.

%---- Lecture 04 on Feb 5 ---------
\newpage
\section{Lecture 04}

Let $\sigma$ be a cone in $N$ (i.e., $\sigma$ is a rational, polyhedral, convex cone in $N_\mathbb{R}$).
Often $\sigma$ is pointed.
Recall that $S_\sigma = \sigma^\vee \cap M \subseteq M$ ($= \mathbb{Z}^n$) is a finitely generated semigroup by its Hilbert basis.

\begin{Def}
Let $A_\sigma = \CC[S_\sigma] = \CC[\sigma^\vee \cap M]$.
This is the $\CC$-algebra such that
\begin{enumerate}
\item $\{t^m : m \in S_\sigma\}$ is a $\CC$-basis for $A_\sigma$
\item $t^{m_1} \cdot t^{m_2} = t^{m_1 + m_2}$
\end{enumerate}
\end{Def}

\begin{Def}
$X_\sigma = \Spec A_\sigma$ is the \emph{affine toric variety} associated to $\sigma$.
\end{Def}

We want to understand:
\begin{itemize}
\item examples
\item ideal
\item points
\item tori and torus action
\item tangent space and singularities
\item toric morphisms.
\end{itemize}

Note that if $\sigma^\vee \cap M = \langle m_1, \dots, m_r \rangle$ then $A_\sigma$ is generated by $\{t^{m_1}, \dots, t^{m_r}\}$.
In particular, $A_\sigma$ is Noetherian.
We have an exact sequence
\[
0 \to \ker \phi \to \CC[x_1, \dots, x_r] \overset{\phi}{\to} A_\sigma \to 0
\]
where $\phi: x_i \mapsto t^{m_i}$.
Then defining $I_\sigma = \ker \phi$ gives that $A_\sigma = \CC[x_1, \dots, x_r]/I_\sigma$.
Thus $X_\sigma = V(I_\sigma) \subseteq \CC^r$ is an affine variety.

\begin{Eg}
Let $\sigma = \mathrm{vcone}\left(\begin{pmatrix}-1\\0\end{pmatrix}, \begin{pmatrix}0\\-1\end{pmatrix}\right)$.

\includegraphics[width=0.3\textwidth]{pic/lec04-pic1}
\includegraphics[width=0.3\textwidth]{pic/lec04-pic2}

Then $A_\sigma = \CC[s, t]$ and $X_\sigma = \CC^2$.
\end{Eg}

\begin{Eg}
If $\sigma = \mathrm{vcone}(-I_n) \subseteq \RR^n$ then $X_\sigma = \CC^n$.
If $\sigma = \mathrm{vcone}(I_n)$ then $X_\sigma = \CC^n$ but with different coordinates.
\end{Eg}

\begin{Eg}
Let $\sigma = \{0\}$ in $N = \ZZ^2$.
Then $\sigma^\vee = M_\RR$, $S_\sigma$ is all lattice points, and $A_\sigma = \CC[s,t,s^{-1},t^{-1}] = \CC[s, t]_{st}$.
This gives $X_\sigma = (\CC^\star)^2$, which is the algebraic torus $T$.
\end{Eg}

\begin{Eg}
Let $\sigma = \{0\}$ in $N = \ZZ^n$.
Then $\sigma^\vee = M_\RR$, $S_\sigma$ is all lattice points, and $A_\sigma = \CC[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$.
This gives $X_\sigma = (\CC^\star)^n$, which is often denoted $T_n$.
\end{Eg}

\begin{Eg}
Let $\sigma = \mathrm{vcone}\left(\begin{pmatrix}-1\\2\end{pmatrix}, \begin{pmatrix}0\\-1\end{pmatrix}\right)$.
Then $\sigma^\vee = \mathrm{vcone}\left(\begin{pmatrix}2\\1\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}\right)$.

\includegraphics[width=0.3\textwidth]{pic/lec04-pic3}

We have $A_\sigma = \CC[s, s^2t] = \CC[u, v]$ and $X_\sigma = \CC^2$.

Now let $\tau = \mathrm{vcone}\left(\begin{pmatrix}-1\\2\end{pmatrix}\right)$ so $\tau^\vee = \mathrm{vcone}\left(\begin{pmatrix}2\\1\end{pmatrix}, \begin{pmatrix}-2\\1\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}\right)$.
Then $A_\tau = \CC[s^2t, (s^2t)^{-1}, s] = (A_\sigma)_{s^2t}$ and $X_\tau = \CC \times \CC^\star \hookrightarrow X_\sigma$ as an open set.
\end{Eg}

Exercise: If $\sigma$ is not pointed, what is $A_\sigma$ and $X_\sigma$?

As before, let $\sigma^\vee \cap M = \langle m_1, \dots, m_r \rangle$ and consider the exact sequence
\[
0 \to I_\sigma \to \CC[x_1, \dots, x_r] \overset{\phi}{\to} A_\sigma \to 0.
\]
Note that $A_\sigma = \CC[\sigma^\vee \cap M] \subseteq \CC[M] = \CC[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$ and $\CC[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$ is a domain.
Thus $A_\sigma$ is a domain, $I_\sigma$ is prime, and $X_\sigma$ is irreducible.

\end{document}
Binary file added lecture-notes/pic/lec04-pic1.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added lecture-notes/pic/lec04-pic2.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added lecture-notes/pic/lec04-pic3.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 7caa7f6

Please sign in to comment.