Skip to content

Commit

Permalink
Make PatternColumn part of the public API
Browse files Browse the repository at this point in the history
  • Loading branch information
Nadrieril committed Jan 30, 2024
1 parent 83e88c6 commit 6ef8362
Show file tree
Hide file tree
Showing 4 changed files with 101 additions and 90 deletions.
10 changes: 5 additions & 5 deletions compiler/rustc_pattern_analysis/src/constructor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -948,10 +948,10 @@ pub enum ConstructorSet<Cx: TypeCx> {
/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
#[derive(Debug)]
pub(crate) struct SplitConstructorSet<Cx: TypeCx> {
pub(crate) present: SmallVec<[Constructor<Cx>; 1]>,
pub(crate) missing: Vec<Constructor<Cx>>,
pub(crate) missing_empty: Vec<Constructor<Cx>>,
pub struct SplitConstructorSet<Cx: TypeCx> {
pub present: SmallVec<[Constructor<Cx>; 1]>,
pub missing: Vec<Constructor<Cx>>,
pub missing_empty: Vec<Constructor<Cx>>,
}

impl<Cx: TypeCx> ConstructorSet<Cx> {
Expand All @@ -960,7 +960,7 @@ impl<Cx: TypeCx> ConstructorSet<Cx> {
/// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
/// and its invariants.
#[instrument(level = "debug", skip(self, ctors), ret)]
pub(crate) fn split<'a>(
pub fn split<'a>(
&self,
ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
) -> SplitConstructorSet<Cx>
Expand Down
4 changes: 3 additions & 1 deletion compiler/rustc_pattern_analysis/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ pub mod errors;
#[cfg(feature = "rustc")]
pub(crate) mod lints;
pub mod pat;
pub mod pat_column;
#[cfg(feature = "rustc")]
pub mod rustc;
pub mod usefulness;
Expand Down Expand Up @@ -67,8 +68,9 @@ use rustc_span::ErrorGuaranteed;

use crate::constructor::{Constructor, ConstructorSet, IntRange};
#[cfg(feature = "rustc")]
use crate::lints::{lint_nonexhaustive_missing_variants, PatternColumn};
use crate::lints::lint_nonexhaustive_missing_variants;
use crate::pat::DeconstructedPat;
use crate::pat_column::PatternColumn;
#[cfg(feature = "rustc")]
use crate::rustc::RustcMatchCheckCtxt;
#[cfg(feature = "rustc")]
Expand Down
87 changes: 3 additions & 84 deletions compiler/rustc_pattern_analysis/src/lints.rs
Original file line number Diff line number Diff line change
@@ -1,92 +1,11 @@
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
use rustc_span::ErrorGuaranteed;

use crate::constructor::{Constructor, SplitConstructorSet};
use crate::constructor::Constructor;
use crate::errors::{NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Uncovered};
use crate::pat::{DeconstructedPat, PatOrWild};
use crate::pat_column::PatternColumn;
use crate::rustc::{RevealedTy, RustcMatchCheckCtxt, WitnessPat};
use crate::{MatchArm, TypeCx};

/// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that
/// inspect the same subvalue/place".
/// This is used to traverse patterns column-by-column for lints. Despite similarities with the
/// algorithm in [`crate::usefulness`], this does a different traversal. Notably this is linear in
/// the depth of patterns, whereas `compute_exhaustiveness_and_usefulness` is worst-case exponential
/// (exhaustiveness is NP-complete). The core difference is that we treat sub-columns separately.
///
/// This must not contain an or-pattern. `expand_and_push` takes care to expand them.
///
/// This is not used in the usefulness algorithm; only in lints.
#[derive(Debug)]
pub(crate) struct PatternColumn<'p, Cx: TypeCx> {
patterns: Vec<&'p DeconstructedPat<'p, Cx>>,
}

impl<'p, Cx: TypeCx> PatternColumn<'p, Cx> {
pub(crate) fn new(arms: &[MatchArm<'p, Cx>]) -> Self {
let patterns = Vec::with_capacity(arms.len());
let mut column = PatternColumn { patterns };
for arm in arms {
column.expand_and_push(PatOrWild::Pat(arm.pat));
}
column
}
/// Pushes a pattern onto the column, expanding any or-patterns into its subpatterns.
/// Internal method, prefer [`PatternColumn::new`].
fn expand_and_push(&mut self, pat: PatOrWild<'p, Cx>) {
// We flatten or-patterns and skip algorithm-generated wildcards.
if pat.is_or_pat() {
self.patterns.extend(
pat.flatten_or_pat().into_iter().filter_map(|pat_or_wild| pat_or_wild.as_pat()),
)
} else if let Some(pat) = pat.as_pat() {
self.patterns.push(pat)
}
}

fn head_ty(&self) -> Option<&Cx::Ty> {
self.patterns.first().map(|pat| pat.ty())
}

/// Do constructor splitting on the constructors of the column.
fn analyze_ctors(&self, cx: &Cx, ty: &Cx::Ty) -> Result<SplitConstructorSet<Cx>, Cx::Error> {
let column_ctors = self.patterns.iter().map(|p| p.ctor());
let ctors_for_ty = cx.ctors_for_ty(ty)?;
Ok(ctors_for_ty.split(column_ctors))
}

/// Does specialization: given a constructor, this takes the patterns from the column that match
/// the constructor, and outputs their fields.
/// This returns one column per field of the constructor. They usually all have the same length
/// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
/// which may change the lengths.
fn specialize(
&self,
cx: &Cx,
ty: &Cx::Ty,
ctor: &Constructor<Cx>,
) -> Vec<PatternColumn<'p, Cx>> {
let arity = ctor.arity(cx, ty);
if arity == 0 {
return Vec::new();
}

// We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
// columns may have different lengths in the presence of or-patterns (this is why we can't
// reuse `Matrix`).
let mut specialized_columns: Vec<_> =
(0..arity).map(|_| Self { patterns: Vec::new() }).collect();
let relevant_patterns =
self.patterns.iter().filter(|pat| ctor.is_covered_by(cx, pat.ctor()));
for pat in relevant_patterns {
let specialized = pat.specialize(ctor, arity);
for (subpat, column) in specialized.into_iter().zip(&mut specialized_columns) {
column.expand_and_push(subpat);
}
}
specialized_columns
}
}
use crate::MatchArm;

/// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned
/// in a given column.
Expand Down
90 changes: 90 additions & 0 deletions compiler/rustc_pattern_analysis/src/pat_column.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
use crate::constructor::{Constructor, SplitConstructorSet};
use crate::pat::{DeconstructedPat, PatOrWild};
use crate::{Captures, MatchArm, TypeCx};

/// A column of patterns in a match, where a column is the intuitive notion of "subpatterns that
/// inspect the same subvalue/place".
/// This is used to traverse patterns column-by-column for lints. Despite similarities with the
/// algorithm in [`crate::usefulness`], this does a different traversal. Notably this is linear in
/// the depth of patterns, whereas `compute_exhaustiveness_and_usefulness` is worst-case exponential
/// (exhaustiveness is NP-complete). The core difference is that we treat sub-columns separately.
///
/// This is not used in the usefulness algorithm; only in lints.
#[derive(Debug)]
pub struct PatternColumn<'p, Cx: TypeCx> {
/// This must not contain an or-pattern. `expand_and_push` takes care to expand them.
patterns: Vec<&'p DeconstructedPat<'p, Cx>>,
}

impl<'p, Cx: TypeCx> PatternColumn<'p, Cx> {
pub fn new(arms: &[MatchArm<'p, Cx>]) -> Self {
let patterns = Vec::with_capacity(arms.len());
let mut column = PatternColumn { patterns };
for arm in arms {
column.expand_and_push(PatOrWild::Pat(arm.pat));
}
column
}
/// Pushes a pattern onto the column, expanding any or-patterns into its subpatterns.
/// Internal method, prefer [`PatternColumn::new`].
fn expand_and_push(&mut self, pat: PatOrWild<'p, Cx>) {
// We flatten or-patterns and skip algorithm-generated wildcards.
if pat.is_or_pat() {
self.patterns.extend(
pat.flatten_or_pat().into_iter().filter_map(|pat_or_wild| pat_or_wild.as_pat()),
)
} else if let Some(pat) = pat.as_pat() {
self.patterns.push(pat)
}
}

pub fn head_ty(&self) -> Option<&Cx::Ty> {
self.patterns.first().map(|pat| pat.ty())
}
pub fn iter<'a>(&'a self) -> impl Iterator<Item = &'p DeconstructedPat<'p, Cx>> + Captures<'a> {
self.patterns.iter().copied()
}

/// Do constructor splitting on the constructors of the column.
pub fn analyze_ctors(
&self,
cx: &Cx,
ty: &Cx::Ty,
) -> Result<SplitConstructorSet<Cx>, Cx::Error> {
let column_ctors = self.patterns.iter().map(|p| p.ctor());
let ctors_for_ty = cx.ctors_for_ty(ty)?;
Ok(ctors_for_ty.split(column_ctors))
}

/// Does specialization: given a constructor, this takes the patterns from the column that match
/// the constructor, and outputs their fields.
/// This returns one column per field of the constructor. They usually all have the same length
/// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
/// which may change the lengths.
pub fn specialize(
&self,
cx: &Cx,
ty: &Cx::Ty,
ctor: &Constructor<Cx>,
) -> Vec<PatternColumn<'p, Cx>> {
let arity = ctor.arity(cx, ty);
if arity == 0 {
return Vec::new();
}

// We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
// columns may have different lengths in the presence of or-patterns (this is why we can't
// reuse `Matrix`).
let mut specialized_columns: Vec<_> =
(0..arity).map(|_| Self { patterns: Vec::new() }).collect();
let relevant_patterns =
self.patterns.iter().filter(|pat| ctor.is_covered_by(cx, pat.ctor()));
for pat in relevant_patterns {
let specialized = pat.specialize(ctor, arity);
for (subpat, column) in specialized.into_iter().zip(&mut specialized_columns) {
column.expand_and_push(subpat);
}
}
specialized_columns
}
}

0 comments on commit 6ef8362

Please sign in to comment.