Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rollup of 7 pull requests #102632

Merged
merged 23 commits into from
Oct 3, 2022
Merged
Changes from 1 commit
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
5dcc418
Document the conditional existence of `alloc::sync` and `alloc::task`.
kpreid Jun 18, 2022
9cd66be
docs: be less harsh in wording for Vec::from_raw_parts
duarten Jul 13, 2022
c9ec7aa
changes to wording
duarten Jul 13, 2022
050115c
typo
duarten Jul 14, 2022
8d35ab3
rustdoc
duarten Jul 14, 2022
a85ee3e
add code examples
duarten Jul 14, 2022
551d921
docs: Improve AsRef / AsMut docs on blanket impls
JanBeh Jul 19, 2022
9f68e3e
fixup! docs: Improve AsRef / AsMut docs on blanket impls
JanBeh Jul 19, 2022
e4a259b
fixup! docs: Improve AsRef / AsMut docs on blanket impls
JanBeh Jul 19, 2022
e6b761b
fixup! docs: Improve AsRef / AsMut docs on blanket impls
JanBeh Jul 21, 2022
698a3c6
Tweak `FpCategory` example order.
reitermarkus Aug 13, 2022
cb86c38
Fix `#[derive(Default)]` on a generic `#[default]` enum adding unnece…
danielhenrymantilla Aug 26, 2022
975e72f
Add corresponding regression test
danielhenrymantilla Aug 26, 2022
3d4980b
Future-proof against loose bounds if default variant is non-exhaustive.
danielhenrymantilla Sep 15, 2022
591c1f2
introduce `{char, u8}::is_ascii_octdigit`
oppiliappan Sep 27, 2022
b9c0467
Add diagnostic struct for const eval error in `rustc_middle`
pierwill Oct 2, 2022
098e8b7
Rollup merge of #98218 - kpreid:nostdarc, r=joshtriplett
matthiaskrgr Oct 3, 2022
2110d2d
Rollup merge of #99216 - duarten:master, r=joshtriplett
matthiaskrgr Oct 3, 2022
eedb512
Rollup merge of #99460 - JanBeh:PR_asref_asmut_docs, r=joshtriplett
matthiaskrgr Oct 3, 2022
c7f1b8e
Rollup merge of #100470 - reitermarkus:patch-1, r=joshtriplett
matthiaskrgr Oct 3, 2022
df11395
Rollup merge of #101040 - danielhenrymantilla:no-bounds-for-default-a…
matthiaskrgr Oct 3, 2022
a548882
Rollup merge of #101308 - nerdypepper:feature/is-ascii-octdigit, r=jo…
matthiaskrgr Oct 3, 2022
1b9014f
Rollup merge of #102486 - pierwill:middle-const-eval-err, r=compiler-…
matthiaskrgr Oct 3, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
docs: Improve AsRef / AsMut docs on blanket impls
- Explicitly mention that `AsRef` and `AsMut` do not auto-dereference
  generally for all dereferencable types (but only if inner type is a
  shared and/or mutable reference)
- Give advice to not use `AsRef` or `AsMut` for the sole purpose of
  dereferencing
- Suggest providing a transitive `AsRef` or `AsMut` implementation for
  types which implement `Deref`
- Add new section "Reflexivity" in documentation comments for `AsRef`
  and `AsMut`
- Provide better example for `AsMut`
- Added heading "Relation to `Borrow`" in `AsRef`'s docs to improve
  structure

Issue #45742 and a corresponding FIXME in the libcore suggest that
`AsRef` and `AsMut` should provide a blanket implementation over
`Deref`. As that is difficult to realize at the moment, this commit
updates the documentation to better describe the status-quo and to give
advice on how to use `AsRef` and `AsMut`.
  • Loading branch information
JanBeh committed Jul 19, 2022
commit 551d921de0f13c54093ab4f6a3adbe69292e091a
177 changes: 159 additions & 18 deletions library/core/src/convert/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
//! # Generic Implementations
//!
//! - [`AsRef`] and [`AsMut`] auto-dereference if the inner type is a reference
//! (but not generally for all [dereferenceable types][core::ops::Deref])
//! - [`From`]`<U> for T` implies [`Into`]`<T> for U`
//! - [`TryFrom`]`<U> for T` implies [`TryInto`]`<T> for U`
//! - [`From`] and [`Into`] are reflexive, which means that all types can
Expand Down Expand Up @@ -108,10 +109,12 @@ pub const fn identity<T>(x: T) -> T {
/// If you need to do a costly conversion it is better to implement [`From`] with type
/// `&T` or write a custom function.
///
/// # Relation to `Borrow`
///
/// `AsRef` has the same signature as [`Borrow`], but [`Borrow`] is different in a few aspects:
///
/// - Unlike `AsRef`, [`Borrow`] has a blanket impl for any `T`, and can be used to accept either
/// a reference or a value.
/// a reference or a value. (See also note on `AsRef`'s reflexibility below.)
/// - [`Borrow`] also requires that [`Hash`], [`Eq`] and [`Ord`] for a borrowed value are
/// equivalent to those of the owned value. For this reason, if you want to
/// borrow only a single field of a struct you can implement `AsRef`, but not [`Borrow`].
Expand All @@ -121,9 +124,55 @@ pub const fn identity<T>(x: T) -> T {
///
/// # Generic Implementations
///
/// - `AsRef` auto-dereferences if the inner type is a reference or a mutable
/// reference (e.g.: `foo.as_ref()` will work the same if `foo` has type
/// `&mut Foo` or `&&mut Foo`)
/// `AsRef` auto-dereferences if the inner type is a reference or a mutable reference
/// (e.g.: `foo.as_ref()` will work the same if `foo` has type `&mut Foo` or `&&mut Foo`).
///
/// Note that due to historic reasons, the above currently does not hold generally for all
/// [dereferenceable types], e.g. `foo.as_ref()` will *not* work the same as
/// `Box::new(foo).as_ref()`. Instead, many smart pointers provide an `as_ref` implementation which
/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
/// reference-to-reference conversion for that value). However, [`AsRef::as_ref`] should not be
/// used for the sole purpose of dereferencing; instead ['`Deref` coercion'] can be used:
///
/// [dereferenceable types]: core::ops::Deref
/// [pointed-to value]: core::ops::Deref::Target
/// ['`Deref` coercion']: core::ops::Deref#more-on-deref-coercion
///
/// ```
/// let x = Box::new(5i32);
/// // Avoid this:
/// // let y: &i32 = x.as_ref();
/// // Better just write:
/// let y: &i32 = &x;
/// ```
///
/// Types which implement [`Deref`][core::ops::Deref] should consider implementing `AsRef` as
/// follows:
///
/// ```
/// impl<T> AsRef<T> for SomeType
/// where
/// T: ?Sized,
/// <SomeType as Deref>::Target: AsRef<T>,
/// {
/// fn as_ref(&self) -> &T {
/// self.deref().as_ref()
/// }
/// }
/// ```
///
/// # Reflexivity
///
/// Ideally, `AsRef` would be reflexive, that is there is an `impl<T: ?Sized> AsRef<T> for T`, with
/// [`as_ref`][AsRef::as_ref] simply returning its argument unchanged.
/// Such a blanket implementation is currently *not* provided due to technical restrictions of
/// Rust's type system (it would be overlapping with another existing blanket implementation for
/// `&T where T: AsRef<U>` which allows `AsRef` to auto-dereference, see "Generic Implementations"
/// above).
///
/// A trivial implementation of `AsRef<T> for T` must be added explicitly for a particular type `T`
/// where needed or desired. Note, however, that not all types from `std` contain such an
/// implementation, and those cannot be added by external code due to orphan rules.
///
/// # Examples
///
Expand Down Expand Up @@ -170,29 +219,121 @@ pub trait AsRef<T: ?Sized> {
///
/// # Generic Implementations
///
/// - `AsMut` auto-dereferences if the inner type is a mutable reference
/// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo`
/// or `&mut &mut Foo`)
/// `AsMut` auto-dereferences if the inner type is a mutable reference
/// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo` or `&mut &mut Foo`).
///
/// Note that due to historic reasons, the above currently does not hold generally for all
/// [mutably dereferenceable types], e.g. `foo.as_mut()` will *not* work the same as
/// `Box::new(foo).as_mut()`. Instead, many smart pointers provide an `as_mut` implementation which
/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
/// reference-to-reference conversion for that value). However, [`AsMut::as_mut`] should not be
/// used for the sole purpose of mutable dereferencing; instead ['`Deref` coercion'] can be used:
///
/// [mutably dereferenceable types]: core::ops::DerefMut
/// [pointed-to value]: core::ops::Deref::Target
/// ['`Deref` coercion']: core::ops::DerefMut#more-on-deref-coercion
///
/// ```
/// let mut x = Box::new(5i32);
/// // Avoid this:
/// // let y: &mut i32 = x.as_mut();
/// // Better just write:
/// let y: &mut i32 = &mut x;
/// ```
///
/// Types which implement [`DerefMut`](core::ops::DerefMut) should consider to add an
/// implementation of `AsMut` as follows:
///
/// ```
/// impl<T> AsMut<T> for SomeType
/// where
/// <SomeType as Deref>::Target: AsMut<T>,
/// {
/// fn as_mut(&mut self) -> &mut T {
/// self.deref_mut().as_mut()
/// }
/// }
/// ```
///
/// # Reflexivity
///
/// Ideally, `AsMut` would be reflexive, that is there is an `impl<T: ?Sized> AsMut<T> for T`, with
/// [`as_mut`][AsMut::as_mut] simply returning its argument unchanged.
/// Such a blanket implementation is currently *not* provided due to technical restrictions of
/// Rust's type system (it would be overlapping with another existing blanket implementation for
/// `&mut T where T: AsMut<U>` which allows `AsMut` to auto-dereference, see "Generic
/// Implementations" above).
///
/// A trivial implementation of `AsMut<T> for T` must be added explicitly for a particular type `T`
/// where needed or desired. Note, however, that not all types from `std` contain such an
/// implementation, and those cannot be added by external code due to orphan rules.
///
/// # Examples
///
/// Using `AsMut` as trait bound for a generic function we can accept all mutable references
/// that can be converted to type `&mut T`. Because [`Box<T>`] implements `AsMut<T>` we can
/// write a function `add_one` that takes all arguments that can be converted to `&mut u64`.
/// Because [`Box<T>`] implements `AsMut<T>`, `add_one` accepts arguments of type
/// `&mut Box<u64>` as well:
/// Using `AsMut` as trait bound for a generic function, we can accept all mutable references that
/// can be converted to type `&mut T`. Unlike [dereference], which has a single [target type],
/// there can be multiple implementations of `AsMut` for a type. In particular, `Vec<T>` implements
/// both `AsMut<Vec<T>>` and `AsMut<[T]>`.
///
/// In the following, the example functions `caesar` and `null_terminate` provide a generic
/// interface which work with any type that can be converted by cheap mutable-to-mutable conversion
/// into a byte slice or byte `Vec`, respectively.
///
/// [dereference]: core::ops::DerefMut
/// [target type]: core::ops::Deref::Target
///
/// ```
/// fn add_one<T: AsMut<u64>>(num: &mut T) {
/// *num.as_mut() += 1;
/// struct Document {
/// info: String,
/// content: Vec<u8>,
/// }
///
/// let mut boxed_num = Box::new(0);
/// add_one(&mut boxed_num);
/// assert_eq!(*boxed_num, 1);
/// impl<T: ?Sized> AsMut<T> for Document
/// where
/// Vec<u8>: AsMut<T>,
/// {
/// fn as_mut(&mut self) -> &mut T {
/// self.content.as_mut()
/// }
/// }
///
/// fn caesar<T: AsMut<[u8]>>(data: &mut T, key: u8) {
/// for byte in data.as_mut() {
/// *byte = byte.wrapping_add(key);
/// }
/// }
///
/// fn null_terminate<T: AsMut<Vec<u8>>>(data: &mut T) {
/// // Using a non-generic inner function, which contains most of the
/// // functionality, helps to minimize monomorphization overhead.
/// fn doit(data: &mut Vec<u8>) {
/// let len = data.len();
/// if len == 0 || data[len-1] != 0 {
/// data.push(0);
/// }
/// }
/// doit(data.as_mut());
/// }
///
/// fn main() {
/// let mut v: Vec<u8> = vec![1, 2, 3];
/// caesar(&mut v, 5);
/// assert_eq!(v, [6, 7, 8]);
/// null_terminate(&mut v);
/// assert_eq!(v, [6, 7, 8, 0]);
/// let mut doc = Document {
/// info: String::from("Example"),
/// content: vec![17, 19, 8],
/// };
/// caesar(&mut doc, 1);
/// assert_eq!(doc.content, [18, 20, 9]);
/// null_terminate(&mut doc);
/// assert_eq!(doc.content, [18, 20, 9, 0]);
/// }
/// ```
///
/// [`Box<T>`]: ../../std/boxed/struct.Box.html
/// Note, however, that APIs don't need to be generic. In many cases taking a `&mut [u8]` or
/// `&mut Vec<u8>`, for example, is the better choice (callers need to pass the correct type then).
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "AsMut")]
pub trait AsMut<T: ?Sized> {
Expand Down