Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Simplify NodeHeader by avoiding slices in BTreeMaps with shared roots #67686

Merged
merged 3 commits into from
Jan 21, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions src/liballoc/collections/btree/map.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1968,7 +1968,7 @@ where
(i, false) => i,
},
(_, Unbounded) => 0,
(true, Included(_)) => min_node.keys().len(),
ssomers marked this conversation as resolved.
Show resolved Hide resolved
(true, Included(_)) => min_node.len(),
(true, Excluded(_)) => 0,
};

Expand All @@ -1987,9 +1987,9 @@ where
}
(i, false) => i,
},
(_, Unbounded) => max_node.keys().len(),
(_, Unbounded) => max_node.len(),
Mark-Simulacrum marked this conversation as resolved.
Show resolved Hide resolved
(true, Included(_)) => 0,
(true, Excluded(_)) => max_node.keys().len(),
(true, Excluded(_)) => max_node.len(),
};

if !diverged {
Expand Down
65 changes: 11 additions & 54 deletions src/liballoc/collections/btree/node.rs
Original file line number Diff line number Diff line change
Expand Up @@ -54,10 +54,8 @@ pub const CAPACITY: usize = 2 * B - 1;
/// `NodeHeader` because we do not want unnecessary padding between `len` and the keys.
/// Crucially, `NodeHeader` can be safely transmuted to different K and V. (This is exploited
/// by `as_header`.)
/// See `into_key_slice` for an explanation of K2. K2 cannot be safely transmuted around
/// because the size of `NodeHeader` depends on its alignment!
#[repr(C)]
struct NodeHeader<K, V, K2 = ()> {
struct NodeHeader<K, V> {
/// We use `*const` as opposed to `*mut` so as to be covariant in `K` and `V`.
/// This either points to an actual node or is null.
parent: *const InternalNode<K, V>,
Expand All @@ -72,9 +70,6 @@ struct NodeHeader<K, V, K2 = ()> {
/// This next to `parent_idx` to encourage the compiler to join `len` and
/// `parent_idx` into the same 32-bit word, reducing space overhead.
len: u16,

/// See `into_key_slice`.
keys_start: [K2; 0],
}
#[repr(C)]
struct LeafNode<K, V> {
Expand Down Expand Up @@ -128,7 +123,7 @@ unsafe impl Sync for NodeHeader<(), ()> {}
// We use just a header in order to save space, since no operation on an empty tree will
// ever take a pointer past the first key.
static EMPTY_ROOT_NODE: NodeHeader<(), ()> =
NodeHeader { parent: ptr::null(), parent_idx: MaybeUninit::uninit(), len: 0, keys_start: [] };
NodeHeader { parent: ptr::null(), parent_idx: MaybeUninit::uninit(), len: 0 };

/// The underlying representation of internal nodes. As with `LeafNode`s, these should be hidden
/// behind `BoxedNode`s to prevent dropping uninitialized keys and values. Any pointer to an
Expand Down Expand Up @@ -390,14 +385,13 @@ impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
}

/// Borrows a view into the keys stored in the node.
/// Works on all possible nodes, including the shared root.
pub fn keys(&self) -> &[K] {
/// The caller must ensure that the node is not the shared root.
pub unsafe fn keys(&self) -> &[K] {
self.reborrow().into_key_slice()
}

/// Borrows a view into the values stored in the node.
/// The caller must ensure that the node is not the shared root.
/// This function is not public, so doesn't have to support shared roots like `keys` does.
fn vals(&self) -> &[V] {
self.reborrow().into_val_slice()
}
Expand Down Expand Up @@ -515,7 +509,6 @@ impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
}

/// The caller must ensure that the node is not the shared root.
/// This function is not public, so doesn't have to support shared roots like `keys` does.
fn keys_mut(&mut self) -> &mut [K] {
unsafe { self.reborrow_mut().into_key_slice_mut() }
}
Expand All @@ -527,48 +520,11 @@ impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
}

impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> {
fn into_key_slice(self) -> &'a [K] {
// We have to be careful here because we might be pointing to the shared root.
// In that case, we must not create an `&LeafNode`. We could just return
// an empty slice whenever the length is 0 (this includes the shared root),
// but we want to avoid that run-time check.
// Instead, we create a slice pointing into the node whenever possible.
// We can sometimes do this even for the shared root, as the slice will be
// empty and `NodeHeader` contains an empty `keys_start` array.
// We cannot *always* do this because:
// - `keys_start` is not correctly typed because we want `NodeHeader`'s size to
// not depend on the alignment of `K` (needed because `as_header` should be safe).
// For this reason, `NodeHeader` has this `K2` parameter (that's usually `()`
// and hence just adds a size-0-align-1 field, not affecting layout).
// If the correctly typed header is more highly aligned than the allocated header,
// we cannot transmute safely.
// - Even if we can transmute, the offset of a correctly typed `keys_start` might
// be different and outside the bounds of the allocated header!
// So we do an alignment check and a size check first, that will be evaluated
// at compile-time, and only do any run-time check in the rare case that
// the compile-time checks signal danger.
if (mem::align_of::<NodeHeader<K, V, K>>() > mem::align_of::<NodeHeader<K, V>>()
|| mem::size_of::<NodeHeader<K, V, K>>() != mem::size_of::<NodeHeader<K, V>>())
&& self.is_shared_root()
{
&[]
} else {
// If we are a `LeafNode<K, V>`, we can always transmute to
// `NodeHeader<K, V, K>` and `keys_start` always has the same offset
// as the actual `keys`.
// Thanks to the checks above, we know that we can transmute to
// `NodeHeader<K, V, K>` and that `keys_start` will be
// in-bounds of some allocation even if this is the shared root!
// (We might be one-past-the-end, but that is allowed by LLVM.)
// Thus we can use `NodeHeader<K, V, K>`
// to compute the pointer where the keys start.
// This entire hack will become unnecessary once
// <https://github.com/rust-lang/rfcs/pull/2582> lands, then we can just take a raw
// pointer to the `keys` field of `*const InternalNode<K, V>`.
let header = self.as_header() as *const _ as *const NodeHeader<K, V, K>;
let keys = unsafe { &(*header).keys_start as *const _ as *const K };
unsafe { slice::from_raw_parts(keys, self.len()) }
}
/// The caller must ensure that the node is not the shared root.
unsafe fn into_key_slice(self) -> &'a [K] {
debug_assert!(!self.is_shared_root());
// We cannot be the shared root, so `as_leaf` is okay.
slice::from_raw_parts(MaybeUninit::first_ptr(&self.as_leaf().keys), self.len())
}

/// The caller must ensure that the node is not the shared root.
Expand All @@ -578,9 +534,10 @@ impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> {
unsafe { slice::from_raw_parts(MaybeUninit::first_ptr(&self.as_leaf().vals), self.len()) }
}

/// The caller must ensure that the node is not the shared root.
fn into_slices(self) -> (&'a [K], &'a [V]) {
let k = unsafe { ptr::read(&self) };
(k.into_key_slice(), self.into_val_slice())
(unsafe { k.into_key_slice() }, self.into_val_slice())
}
}

Expand Down
18 changes: 10 additions & 8 deletions src/liballoc/collections/btree/search.rs
Original file line number Diff line number Diff line change
Expand Up @@ -61,16 +61,18 @@ where
{
// This function is defined over all borrow types (immutable, mutable, owned),
// and may be called on the shared root in each case.
// Crucially, we use `keys()` here, i.e., we work with immutable data.
// `keys_mut()` does not support the shared root, so we cannot use it.
// Using `keys()` is fine here even if BorrowType is mutable, as all we return
// is an index -- not a reference.
for (i, k) in node.keys().iter().enumerate() {
match key.cmp(k.borrow()) {
Ordering::Greater => {}
Ordering::Equal => return (i, true),
Ordering::Less => return (i, false),
let len = node.len();
Mark-Simulacrum marked this conversation as resolved.
Show resolved Hide resolved
if len > 0 {
let keys = unsafe { node.keys() }; // safe because a non-empty node cannot be the shared root
for (i, k) in keys.iter().enumerate() {
match key.cmp(k.borrow()) {
Ordering::Greater => {}
Ordering::Equal => return (i, true),
Ordering::Less => return (i, false),
}
}
}
(node.keys().len(), false)
(len, false)
}