Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: implement NIST P-256 and P-384 curves #697

Merged
merged 16 commits into from
May 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 46 additions & 5 deletions std/algebra/emulated/sw_emulated/params.go
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
package sw_emulated

import (
"crypto/elliptic"
"math/big"

bls12381 "github.com/consensys/gnark-crypto/ecc/bls12-381"
Expand Down Expand Up @@ -65,16 +66,52 @@ func GetBLS12381Params() CurveParams {
}
}

// GetCurveParams returns suitable curve parameters given the parametric type Base as base field.
// GetP256Params returns the curve parameters for the curve P-256 (also
// SECP256r1). When initialising new curve, use the base field
// [emulated.P256Fp] and scalar field [emulated.P256Fr].
func GetP256Params() CurveParams {
pr := elliptic.P256().Params()
a := new(big.Int).Sub(pr.P, big.NewInt(3))
return CurveParams{
A: a,
B: pr.B,
Gx: pr.Gx,
Gy: pr.Gy,
Gm: computeP256Table(),
}
}

// GetP384Params returns the curve parameters for the curve P-384 (also
// SECP384r1). When initialising new curve, use the base field
// [emulated.P384Fp] and scalar field [emulated.P384Fr].
func GetP384Params() CurveParams {
pr := elliptic.P384().Params()
a := new(big.Int).Sub(pr.P, big.NewInt(3))
return CurveParams{
A: a,
B: pr.B,
Gx: pr.Gx,
Gy: pr.Gy,
Gm: computeP384Table(),
}
}

// GetCurveParams returns suitable curve parameters given the parametric type
// Base as base field. It caches the parameters and modifying the values in the
// parameters struct leads to undefined behaviour.
func GetCurveParams[Base emulated.FieldParams]() CurveParams {
var t Base
switch t.Modulus().Text(16) {
case "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f":
switch t.Modulus().String() {
case emulated.Secp256k1Fp{}.Modulus().String():
return secp256k1Params
case "30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47":
case emulated.BN254Fp{}.Modulus().String():
return bn254Params
case "1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab":
case emulated.BLS12381Fp{}.Modulus().String():
return bls12381Params
case emulated.P256Fp{}.Modulus().String():
return p256Params
case emulated.P384Fp{}.Modulus().String():
return p384Params
default:
panic("no stored parameters")
}
Expand All @@ -84,10 +121,14 @@ var (
secp256k1Params CurveParams
bn254Params CurveParams
bls12381Params CurveParams
p256Params CurveParams
p384Params CurveParams
)

func init() {
secp256k1Params = GetSecp256k1Params()
bn254Params = GetBN254Params()
bls12381Params = GetBLS12381Params()
p256Params = GetP256Params()
p384Params = GetP384Params()
}
45 changes: 45 additions & 0 deletions std/algebra/emulated/sw_emulated/params_compute.go
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
package sw_emulated

import (
"crypto/elliptic"
"math/big"

bls12381 "github.com/consensys/gnark-crypto/ecc/bls12-381"
Expand Down Expand Up @@ -85,3 +86,47 @@ func computeBLS12381Table() [][2]*big.Int {
}
return table
}

func computeP256Table() [][2]*big.Int {
table := make([][2]*big.Int, 256)
p256 := elliptic.P256()
gx, gy := p256.Params().Gx, p256.Params().Gy
tmpx, tmpy := new(big.Int).Set(gx), new(big.Int).Set(gy)
for i := 1; i < 256; i++ {
tmpx, tmpy = p256.Double(tmpx, tmpy)
switch i {
case 1, 2:
xx, yy := p256.Add(tmpx, tmpy, gx, gy)
table[i-1] = [2]*big.Int{xx, yy}
case 3:
xx, yy := p256.Add(tmpx, tmpy, gx, new(big.Int).Sub(p256.Params().P, gy))
table[i-1] = [2]*big.Int{xx, yy}
fallthrough
default:
table[i] = [2]*big.Int{tmpx, tmpy}
}
}
return table
}

func computeP384Table() [][2]*big.Int {
table := make([][2]*big.Int, 384)
p384 := elliptic.P384()
gx, gy := p384.Params().Gx, p384.Params().Gy
tmpx, tmpy := new(big.Int).Set(gx), new(big.Int).Set(gy)
for i := 1; i < 384; i++ {
tmpx, tmpy = p384.Double(tmpx, tmpy)
switch i {
case 1, 2:
xx, yy := p384.Add(tmpx, tmpy, gx, gy)
table[i-1] = [2]*big.Int{xx, yy}
case 3:
xx, yy := p384.Add(tmpx, tmpy, gx, new(big.Int).Sub(p384.Params().P, gy))
table[i-1] = [2]*big.Int{xx, yy}
fallthrough
default:
table[i] = [2]*big.Int{tmpx, tmpy}
}
}
return table
}
48 changes: 48 additions & 0 deletions std/algebra/emulated/sw_emulated/point_test.go
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
package sw_emulated

import (
"crypto/elliptic"
"crypto/rand"
"math/big"
"testing"

Expand Down Expand Up @@ -569,6 +571,52 @@ func TestScalarMul3(t *testing.T) {
assert.NoError(err)
}

func TestScalarMul4(t *testing.T) {
assert := test.NewAssert(t)
p256 := elliptic.P256()
s, err := rand.Int(rand.Reader, p256.Params().N)
assert.NoError(err)
px, py := p256.ScalarBaseMult(s.Bytes())

circuit := ScalarMulTest[emulated.P256Fp, emulated.P256Fr]{}
witness := ScalarMulTest[emulated.P256Fp, emulated.P256Fr]{
S: emulated.ValueOf[emulated.P256Fr](s),
P: AffinePoint[emulated.P256Fp]{
X: emulated.ValueOf[emulated.P256Fp](p256.Params().Gx),
Y: emulated.ValueOf[emulated.P256Fp](p256.Params().Gy),
},
Q: AffinePoint[emulated.P256Fp]{
X: emulated.ValueOf[emulated.P256Fp](px),
Y: emulated.ValueOf[emulated.P256Fp](py),
},
}
err = test.IsSolved(&circuit, &witness, testCurve.ScalarField())
assert.NoError(err)
}

func TestScalarMul5(t *testing.T) {
assert := test.NewAssert(t)
p384 := elliptic.P384()
s, err := rand.Int(rand.Reader, p384.Params().N)
assert.NoError(err)
px, py := p384.ScalarBaseMult(s.Bytes())

circuit := ScalarMulTest[emulated.P384Fp, emulated.P384Fr]{}
witness := ScalarMulTest[emulated.P384Fp, emulated.P384Fr]{
S: emulated.ValueOf[emulated.P384Fr](s),
P: AffinePoint[emulated.P384Fp]{
X: emulated.ValueOf[emulated.P384Fp](p384.Params().Gx),
Y: emulated.ValueOf[emulated.P384Fp](p384.Params().Gy),
},
Q: AffinePoint[emulated.P384Fp]{
X: emulated.ValueOf[emulated.P384Fp](px),
Y: emulated.ValueOf[emulated.P384Fp](py),
},
}
err = test.IsSolved(&circuit, &witness, testCurve.ScalarField())
assert.NoError(err)
}

type IsOnCurveTest[T, S emulated.FieldParams] struct {
Q AffinePoint[T]
}
Expand Down
111 changes: 111 additions & 0 deletions std/signature/ecdsa/ecdsa_secpr_test.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
package ecdsa

import (
cryptoecdsa "crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"math/big"
"testing"

"github.com/consensys/gnark-crypto/ecc"
"github.com/consensys/gnark/std/math/emulated"
"github.com/consensys/gnark/test"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)

func TestEcdsaP256PreHashed(t *testing.T) {

// generate parameters
privKey, _ := cryptoecdsa.GenerateKey(elliptic.P256(), rand.Reader)
publicKey := privKey.PublicKey

// sign
msg := []byte("testing ECDSA (pre-hashed)")
msgHash := sha256.Sum256(msg)
sigBin, _ := privKey.Sign(rand.Reader, msgHash[:], nil)

// check that the signature is correct
var (
r, s = &big.Int{}, &big.Int{}
inner cryptobyte.String
)
input := cryptobyte.String(sigBin)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(r) ||
!inner.ReadASN1Integer(s) ||
!inner.Empty() {
panic("invalid sig")
}
flag := cryptoecdsa.Verify(&publicKey, msgHash[:], r, s)
if !flag {
t.Errorf("can't verify signature")
}

circuit := EcdsaCircuit[emulated.P256Fp, emulated.P256Fr]{}
witness := EcdsaCircuit[emulated.P256Fp, emulated.P256Fr]{
Sig: Signature[emulated.P256Fr]{
R: emulated.ValueOf[emulated.P256Fr](r),
S: emulated.ValueOf[emulated.P256Fr](s),
},
Msg: emulated.ValueOf[emulated.P256Fr](msgHash[:]),
Pub: PublicKey[emulated.P256Fp, emulated.P256Fr]{
X: emulated.ValueOf[emulated.P256Fp](privKey.PublicKey.X),
Y: emulated.ValueOf[emulated.P256Fp](privKey.PublicKey.Y),
},
}
assert := test.NewAssert(t)
err := test.IsSolved(&circuit, &witness, ecc.BN254.ScalarField())
assert.NoError(err)

}

func TestEcdsaP384PreHashed(t *testing.T) {

// generate parameters
privKey, _ := cryptoecdsa.GenerateKey(elliptic.P384(), rand.Reader)
publicKey := privKey.PublicKey

// sign
msg := []byte("testing ECDSA (pre-hashed)")
msgHash := sha512.Sum384(msg)
sigBin, _ := privKey.Sign(rand.Reader, msgHash[:], nil)

// check that the signature is correct
var (
r, s = &big.Int{}, &big.Int{}
inner cryptobyte.String
)
input := cryptobyte.String(sigBin)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(r) ||
!inner.ReadASN1Integer(s) ||
!inner.Empty() {
panic("invalid sig")
}
flag := cryptoecdsa.Verify(&publicKey, msgHash[:], r, s)
if !flag {
t.Errorf("can't verify signature")
}

circuit := EcdsaCircuit[emulated.P384Fp, emulated.P384Fr]{}
witness := EcdsaCircuit[emulated.P384Fp, emulated.P384Fr]{
Sig: Signature[emulated.P384Fr]{
R: emulated.ValueOf[emulated.P384Fr](r),
S: emulated.ValueOf[emulated.P384Fr](s),
},
Msg: emulated.ValueOf[emulated.P384Fr](msgHash[:]),
Pub: PublicKey[emulated.P384Fp, emulated.P384Fr]{
X: emulated.ValueOf[emulated.P384Fp](privKey.PublicKey.X),
Y: emulated.ValueOf[emulated.P384Fp](privKey.PublicKey.Y),
},
}
assert := test.NewAssert(t)
err := test.IsSolved(&circuit, &witness, ecc.BN254.ScalarField())
assert.NoError(err)

}