Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[RUNTIME] Add fp16/fp32 conversion functions #1766

Merged
merged 4 commits into from
Sep 25, 2018
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
[RUNTIME] Add fp16 functions
  • Loading branch information
merrymercy committed Sep 24, 2018
commit af7c424bdd8ede2690e48e095b16334750acbbc0
21 changes: 21 additions & 0 deletions src/runtime/builtin_fp16.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
/*!
* Copyright (c) 2018 by Contributors
* \file builtin_fp16.cc
* \brief Functions for conversion between fp32 and fp16
*/

#include <builtin_fp16.h>

namespace tvm {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove namespace as they are not part of namespace

namespace runtime {

extern "C" uint16_t __gnu_f2h_ieee(float a) {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Followup comment, we need to set it to be TVM_WEAK linkage so if user link compiler-rt, there will not be type conflict

return __truncXfYf2__<float, uint32_t, 23, uint16_t, uint16_t, 10>(a);
}

extern "C" float __gnu_h2f_ieee(uint16_t a) {
return __extendXfYf2__<uint16_t, uint16_t, 10, float, uint32_t, 23>(a);
}

} // namespace runtime
} // namespace tvm
21 changes: 21 additions & 0 deletions tests/python/unittest/test_runtime_ndarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,5 +35,26 @@ def test_nd_create():
ctx.sync()


def test_fp16_conversion():
n = 100

for (src, dst) in [('float32', 'float16'), ('float16', 'float32')]:
A = tvm.placeholder((n,), dtype=src)
B = tvm.compute((n,), lambda i: A[i].astype(dst))

s = tvm.create_schedule([B.op])
func = tvm.build(s, [A, B], 'llvm')

x_tvm = tvm.nd.array(100 * np.random.randn(n).astype(src) - 50)
y_tvm = tvm.nd.array(100 * np.random.randn(n).astype(dst) - 50)

func(x_tvm, y_tvm)

expected = x_tvm.asnumpy().astype(dst)
real = y_tvm.asnumpy()

np.testing.assert_allclose(expected, real)

if __name__ == "__main__":
test_nd_create()
test_fp16_conversion()
210 changes: 210 additions & 0 deletions third_party/compiler-rt/builtin_fp16.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
/*
* Copyright (c) 2009-2015 by llvm/compiler-rt contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.

* Copyright (c) 2018 by Contributors
* \file builtin_fp16.cc
* \brief Functions for conversion between fp32 and fp16, adopted from compiler-rt.
*/

#include <cstdint>

static inline uint32_t __clz(uint32_t x) {
// count leading zeros
int n = 32;
uint32_t y;

y = x >>16; if (y) { n = n -16; x = y; }
y = x >> 8; if (y) { n = n - 8; x = y; }
y = x >> 4; if (y) { n = n - 4; x = y; }
y = x >> 2; if (y) { n = n - 2; x = y; }
y = x >> 1; if (y) return n - 2;
return n - x;
}

template <typename SRC_T, typename SRC_REP_T, int SRC_SIG_BITS,
typename DST_T, typename DST_REP_T, int DST_SIG_BITS>
static inline DST_T __truncXfYf2__(SRC_T a) {
// Various constants whose values follow from the type parameters.
// Any reasonable optimizer will fold and propagate all of these.
const int srcBits = sizeof(SRC_T) * 8;
const int srcExpBits = srcBits - SRC_SIG_BITS - 1;
const int srcInfExp = (1 << srcExpBits) - 1;
const int srcExpBias = srcInfExp >> 1;

const SRC_REP_T srcMinNormal = SRC_REP_T(1) << SRC_SIG_BITS;
const SRC_REP_T srcSignificandMask = srcMinNormal - 1;
const SRC_REP_T srcInfinity = (SRC_REP_T)srcInfExp << SRC_SIG_BITS;
const SRC_REP_T srcSignMask = SRC_REP_T(1) << (SRC_SIG_BITS + srcExpBits);
const SRC_REP_T srcAbsMask = srcSignMask - 1;
const SRC_REP_T roundMask = (SRC_REP_T(1) << (SRC_SIG_BITS - DST_SIG_BITS)) - 1;
const SRC_REP_T halfway = SRC_REP_T(1) << (SRC_SIG_BITS - DST_SIG_BITS - 1);
const SRC_REP_T srcQNaN = SRC_REP_T(1) << (SRC_SIG_BITS - 1);
const SRC_REP_T srcNaNCode = srcQNaN - 1;

const int dstBits = sizeof(DST_T) * 8;
const int dstExpBits = dstBits - DST_SIG_BITS - 1;
const int dstInfExp = (1 << dstExpBits) - 1;
const int dstExpBias = dstInfExp >> 1;

const int underflowExponent = srcExpBias + 1 - dstExpBias;
const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
const SRC_REP_T underflow = (SRC_REP_T)underflowExponent << SRC_SIG_BITS;
const SRC_REP_T overflow = (SRC_REP_T)overflowExponent << SRC_SIG_BITS;

const DST_REP_T dstQNaN = DST_REP_T(1) << (DST_SIG_BITS - 1);
const DST_REP_T dstNaNCode = dstQNaN - 1;

// Break a into a sign and representation of the absolute value
const union { SRC_T f; SRC_REP_T i; } src_rep = {.f = a};
const SRC_REP_T aRep = src_rep.i;
const SRC_REP_T aAbs = aRep & srcAbsMask;
const SRC_REP_T sign = aRep & srcSignMask;
DST_REP_T absResult;

if (aAbs - underflow < aAbs - overflow) {
// The exponent of a is within the range of normal numbers in the
// destination format. We can convert by simply right-shifting with
// rounding and adjusting the exponent.
absResult = aAbs >> (SRC_SIG_BITS - DST_SIG_BITS);
absResult -= (DST_REP_T)(srcExpBias - dstExpBias) << DST_SIG_BITS;

const SRC_REP_T roundBits = aAbs & roundMask;
// Round to nearest
if (roundBits > halfway)
absResult++;
// Ties to even
else if (roundBits == halfway)
absResult += absResult & 1;
}
else if (aAbs > srcInfinity) {
// a is NaN.
// Conjure the result by beginning with infinity, setting the qNaN
// bit and inserting the (truncated) trailing NaN field.
absResult = (DST_REP_T)dstInfExp << DST_SIG_BITS;
absResult |= dstQNaN;
absResult |= ((aAbs & srcNaNCode) >> (SRC_SIG_BITS - DST_SIG_BITS)) & dstNaNCode;
}
else if (aAbs >= overflow) {
// a overflows to infinity.
absResult = (DST_REP_T)dstInfExp << DST_SIG_BITS;
}
else {
// a underflows on conversion to the destination type or is an exact
// zero. The result may be a denormal or zero. Extract the exponent
// to get the shift amount for the denormalization.
const int aExp = aAbs >> SRC_SIG_BITS;
const int shift = srcExpBias - dstExpBias - aExp + 1;

const SRC_REP_T significand = (aRep & srcSignificandMask) | srcMinNormal;

// Right shift by the denormalization amount with sticky.
if (shift > SRC_SIG_BITS) {
absResult = 0;
} else {
const bool sticky = significand << (srcBits - shift);
SRC_REP_T denormalizedSignificand = significand >> shift | sticky;
absResult = denormalizedSignificand >> (SRC_SIG_BITS - DST_SIG_BITS);
const SRC_REP_T roundBits = denormalizedSignificand & roundMask;
// Round to nearest
if (roundBits > halfway)
absResult++;
// Ties to even
else if (roundBits == halfway)
absResult += absResult & 1;
}
}

// Apply the signbit to (DST_T)abs(a).
const DST_REP_T result = absResult | sign >> (srcBits - dstBits);
const union { DST_T f; DST_REP_T i; } dst_rep = {.i = result};
return dst_rep.f;
}

template<typename SRC_T, typename SRC_REP_T, int SRC_SIG_BITS,
typename DST_T, typename DST_REP_T, int DST_SIG_BITS>
static inline DST_T __extendXfYf2__(SRC_T a) {
// Various constants whose values follow from the type parameters.
// Any reasonable optimizer will fold and propagate all of these.
const int srcBits = sizeof(SRC_T) * 8;
const int srcExpBits = srcBits - SRC_SIG_BITS - 1;
const int srcInfExp = (1 << srcExpBits) - 1;
const int srcExpBias = srcInfExp >> 1;

const SRC_REP_T srcMinNormal = SRC_REP_T(1) << SRC_SIG_BITS;
const SRC_REP_T srcInfinity = (SRC_REP_T)srcInfExp << SRC_SIG_BITS;
const SRC_REP_T srcSignMask = SRC_REP_T(1) << (SRC_SIG_BITS + srcExpBits);
const SRC_REP_T srcAbsMask = srcSignMask - 1;
const SRC_REP_T srcQNaN = SRC_REP_T(1) << (SRC_SIG_BITS - 1);
const SRC_REP_T srcNaNCode = srcQNaN - 1;

const int dstBits = sizeof(DST_T)*8;
const int dstExpBits = dstBits - DST_SIG_BITS - 1;
const int dstInfExp = (1 << dstExpBits) - 1;
const int dstExpBias = dstInfExp >> 1;

const DST_REP_T dstMinNormal = DST_REP_T(1) << DST_SIG_BITS;

// Break a into a sign and representation of the absolute value
const union { SRC_T f; SRC_REP_T i; } src_rep = {.f = a};
const SRC_REP_T aRep = src_rep.i;
const SRC_REP_T aAbs = aRep & srcAbsMask;
const SRC_REP_T sign = aRep & srcSignMask;
DST_REP_T absResult;

// If sizeof(SRC_REP_T) < sizeof(int), the subtraction result is promoted
// to (signed) int. To avoid that, explicitly cast to SRC_REP_T.
if ((SRC_REP_T)(aAbs - srcMinNormal) < srcInfinity - srcMinNormal) {
// a is a normal number.
// Extend to the destination type by shifting the significand and
// exponent into the proper position and rebiasing the exponent.
absResult = (DST_REP_T)aAbs << (DST_SIG_BITS - SRC_SIG_BITS);
absResult += (DST_REP_T)(dstExpBias - srcExpBias) << DST_SIG_BITS;
}

else if (aAbs >= srcInfinity) {
// a is NaN or infinity.
// Conjure the result by beginning with infinity, then setting the qNaN
// bit (if needed) and right-aligning the rest of the trailing NaN
// payload field.
absResult = (DST_REP_T)dstInfExp << DST_SIG_BITS;
absResult |= (DST_REP_T)(aAbs & srcQNaN) << (DST_SIG_BITS - SRC_SIG_BITS);
absResult |= (DST_REP_T)(aAbs & srcNaNCode) << (DST_SIG_BITS - SRC_SIG_BITS);
}
else if (aAbs) {
// a is denormal.
// renormalize the significand and clear the leading bit, then insert
// the correct adjusted exponent in the destination type.
const int scale = __clz(aAbs) - __clz(srcMinNormal);
absResult = (DST_REP_T)aAbs << (DST_SIG_BITS - SRC_SIG_BITS + scale);
absResult ^= dstMinNormal;
const int resultExponent = dstExpBias - srcExpBias - scale + 1;
absResult |= (DST_REP_T)resultExponent << DST_SIG_BITS;
}
else {
// a is zero.
absResult = 0;
}

// Apply the signbit to (DST_T)abs(a).
const DST_REP_T result = absResult | (DST_REP_T)sign << (dstBits - srcBits);
const union { DST_T f; DST_REP_T i; } dst_rep = {.i = result};
return dst_rep.f;
}