Skip to content

Commit

Permalink
Add Lecture 5 on Feb 7th
Browse files Browse the repository at this point in the history
By Rodrigo Horruitiner (rmh322)
  • Loading branch information
yuanbeihui05 committed Feb 7, 2019
1 parent 7caa7f6 commit fea192d
Show file tree
Hide file tree
Showing 2 changed files with 176 additions and 1 deletion.
177 changes: 176 additions & 1 deletion lecture-notes/lecture-notes.tex
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,21 @@
-A\\
-I
\end{bmatrix}}
\newcommand{\bb}[1]{{\mathbb{#1}}}
\newcommand{\mc}[1]{{\mathscr{#1}}}
\newcommand{\tens}[1]{%
\mathbin{\mathop{\otimes}\displaylimits_{#1}}%
}
\newcommand{\fk}{\mathfrak}

\newcommand\restr[2]{{% we make the whole thing an ordinary symbol
\left.\kern-\nulldelimiterspace % automatically resize the bar with \right
#1 % the function
\vphantom{\big|} % pretend it's a little taller at normal size
\right|_{#2} % this is the delimiter
}}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Inn}{Inn}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Spec}{Spec}

Expand All @@ -26,6 +41,7 @@
\usepackage{dsfont}
\usepackage{enumerate}
\usepackage{graphicx}
\usepackage{tikz-cd}
\usepackage{subcaption}


Expand All @@ -45,7 +61,7 @@
\theoremstyle{definition}
\newtheorem*{Problem}{Problem}
\newtheorem*{Def}{Definition}
\newtheorem{Eg}{Example}
\newtheorem{Eg}{Example}[section]

\theoremstyle{remark}
\newtheorem*{Remark}{Remark}
Expand Down Expand Up @@ -709,4 +725,163 @@ \section{Lecture 04}
Note that $A_\sigma = \CC[\sigma^\vee \cap M] \subseteq \CC[M] = \CC[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$ and $\CC[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$ is a domain.
Thus $A_\sigma$ is a domain, $I_\sigma$ is prime, and $X_\sigma$ is irreducible.

\newpage
\section{Lecture 5}
Recall some notation and observations from last time:
\begin{align*}
A_\sigma := \CC[\sigma^\vee \cap M]
X_\sigma = \Spec A_\sigma = \bb{V}(I_\sigma) \subseteq \CC^r
\end{align*}
if $\sigma^\vee \cap M = \langle m_1, ..., m_r \rangle$ then the natural projection $\varphi: x_i \mapsto m_i$ forms an exact sequence
\begin{center}
\begin{tikzcd}
0 \arrow[r] & I_\sigma \arrow[r] & {\CC[x_1,...,x_r]} \arrow[r, "\varphi"] & A_\sigma \arrow[r] & 0.
\end{tikzcd}
\end{center}

Recall from last time that $I_\sigma$ is a prime ideal, so that $X_\sigma$ is an irreducible (reduced) variety. What is $I_\sigma$?

\begin{Proposition}
$I_\sigma$ is generated by $\langle x_1^{\alpha_1} \cdots x_r^{\alpha_r} - x_1^{\beta_1} \cdots x_r^{\beta_r} : \forall i (\alpha_i, \beta_i \geq 0, \sum_i \alpha_i m_i = \sum_i \beta_i m_i) \rangle $.
\end{Proposition}
\begin{proof}

($\supseteq$) $\varphi(x_1^{\alpha_1} \cdots x_r^{\alpha_r}) = t^{\sum_i \alpha_i m_i}$ and $\varphi(x_1^{\beta_1} \cdots x_r^{\beta_r}) = t^{\sum_i \beta_i m_i}$

($\subseteq$) Note that $x^\alpha - x^\beta \in I_\sigma \iff \sum_i \alpha_i m_i = \sum_i \beta_i m_i$. Note as well that if $J := \langle t^{m_1} - x_1, ..., t^{m_r} - x_r\rangle \subseteq \CC[t_1, ..., t_n x_1, ..., x_r]$ (where $M = \ZZ^n$ is generated by $e_1, ..., e_n$, and we let $t_i := t^{e_i}$) then $I_\sigma = J \cap \CC[x_1, ..., x_r]$.

In order to see this, recall the theory of Groebner bases. Choose the lexicographic monomial order $t_1 > t_2 > ... > x_r$. Let $G$ be the Groebner basis of $J = \{g_1, ..., g_N\}$ in this order. Then $J \cap \CC[x_1, ..., x_r]$ is generated by the $\{g_i : g_i \in \CC[x_1, ..., x_r]$. It is easy to see that $G$ is generated by binomials.
\end{proof}
\paragraph{Products (exercise)}
Suppose $\sigma$ is a cone in $N$, and $\sigma'$ is a cone in $N'$. Then
\begin{enumerate}
\item $\sigma \times \sigma'$ is a cone in $N \oplus N'$
\item $(\sigma \times \sigma')^\vee =$ ???
\item $A_{\sigma \times \sigma'} =$ ???
\item Show that $X_{\sigma \times \sigma'} \simeq X_\sigma \times X_{\sigma'}$ ( $= X_\sigma \times_{\Spec \CC} X_{\sigma'}$ )
\end{enumerate}

\begin{Eg}
Let

$\sigma = 0 \subset N = \ZZ^r$

$\sigma' = \langle e_1, ..., e_s \rangle \subseteq N' = \ZZ^s$ ($\sigma' = N'_\RR$)

then $X_\sigma \times X_{\sigma'} = (\CC*)^r \times \CC^s$.
\end{Eg}

The plan for this session is to cover some local properties of $X_\sigma$. This includes \textit{points}, the \textit{zariski tangent space}, the \textit{torus action} and the \textit{cone-orbit correspondence} in the affine case.


\paragraph{Points on $X_\sigma$}
If $X$ is a variety (or scheme) then a (closed) point of $X$ is ``really'' a morphism $\Spec \CC \to X$ (understanding $\Spec \CC$ as a point).

Unraveling this, we have a map $\varphi: \Spec \CC \to \Spec \CC[\sigma^\vee \cap M]$, so that the data of $\varphi$ is corresponds one to one with the data of a map $\varphi^\#: \CC[\sigma^\vee \cap M] \to \CC$, an \textit{evaluation map}. Such a map corresponds one to one with a semigroup homomorphism $\rho: \sigma^\vee \cap M \to \CC^\times$ (i.e. $\rho(m_1 + m_2) = \rho(m_1) \rho(m_2)$ whenever $m_1$ and $m_2$ are in $\sigma^\vee \cap M$, and $\rho(id) = 1$).

In other words, we have a correspondence
\begin{center}
\begin{tikzcd}
\text{points of } X_\sigma \arrow[rr] & & {\Hom_{\text{semigroup}} (\sigma^\vee \cap M, \CC)} \arrow[ll, "1 \text{ to } 1"'].
\end{tikzcd}
\end{center}

\begin{Def}[Distinguished point]
$p_\sigma \in X_\sigma$ is the point corresponding to
\begin{align*}
\sigma^\vee \cap M &\to \CC \\
m &\mapsto \begin{cases}
1 \text{ if } m \in \sigma^\perp \\
0 \text{ if } m \not \in \sigma^\perp
\end{cases}
\end{align*}
\end{Def}
Note that if $\sigma$ is full dimensional then this map sends $m$ to $1$ if and only if $m = 0$. This is a semigroup homomorphism since if $m_1, m_2 \in \sigma^\vee \cap M$ then $m_1 + m_2 \in \sigma^\perp \iff m_1, m_2 \in \sigma^\perp$.

\begin{Proposition}
Let $\tau \leq sigma$ (i.e. $\tau$ is a face of $\sigma$). Let $u \in \sigma^\vee \cap M$ s.t. $\tau = \sigma \cap u^\perp$. Then $S_\tau = S_\sigma + \ZZ_{\geq 0} \cdot (-u)$.
\end{Proposition}
\begin{proof}
Exercise.
\end{proof}

\begin{Def}[Principal affine open sets]
If $X$ is an affine variety, and $f \in A(X)$, then $U_f := X \setminus V(f) \subset X$ is called a \textbf{ principal (affine) or basic open set of $V$}.
\end{Def}

\begin{Corollary}
If $\tau \leq \sigma$, and $u$ is as above, then $A_\tau = (A_\sigma)_{t^{u}}$ and so $X_\tau \subseteq X_\sigma$ is a principal open set.
\end{Corollary}
Note: If $\tau \leq \sigma$ is a face, we have $p_\tau \in X_\tau \subset X_\sigma$. In other words, we have distinguished points $p_\tau \in X_\sigma$ for all faces $\tau$ of $\sigma$.

\paragraph{Example}
Consider the cone $\sigma$ pictured below in red:

\begin{center}
\includegraphics[scale=0.2]{pic/toricvar_feb7_1}
\end{center}

We want to understand the points $p_\sigma, p_{\tau_1}, p_{\tau_2}, p_0$.
\begin{enumerate}
\item $p_\sigma(m) = \begin{cases}
1 \text{ if } m = 0 \\
0 \text{ if } m \neq 0 \\
\end{cases}$

so that $p_\sigma = (0,0) \in \CC^2_{uv}$.
\item $p_{\tau_1} = (1,0)$
\item $p_{\tau_2} = (0,1)$
\item $p_{0} = (1,1)$
\end{enumerate}
We have inclusions on open sets given by the diagrams:
\begin{center}
\begin{tikzcd}
& X_{\tau_1} = \CC^* \times \CC \arrow[rd, hook] & \\
(\CC^*)^2 = X_0 \arrow[rd, hook] \arrow[ru, hook] & & X_\sigma = \CC^2 \\
& X_{\tau_2} = \CC \times \CC^* \arrow[ru, hook] &
\end{tikzcd}
\end{center}

\paragraph{Zariski tangent space / nonsingularity}
Recall: if $X \subseteq \CC^n$ is an affine variety, $A(X) = \CC[x_1, ..., x_n]/I$. If $p \in X$ is a (closed) point: $p = (p_1, ..., p_n) \in X \subseteq \CC^n$, we have an exact sequence
\begin{center}
\begin{tikzcd}
0 \arrow[r] & \mathfrak{m}_p \arrow[r] & {\CC[x_1, ..., x_n]/I} \arrow[r, "ev_p"] & \CC \arrow[r] & 0
\end{tikzcd}
\end{center}
where $\mathfrak{m}$ denotes the maximal ideal of $p$ in $X$, and $ev_p$ is the evaluation map sending each $x_i$ to $p_i$ (in the language of sheaves, $\mathfrak{m}_p = \mathfrak{m}_{X,p} = \mathcal{O}_{X,p}$).

We define the \textbf{Zariski cotangent space} at the point $p$ as $T^*_{X, p} := \mathfrak{m}_p / \mathfrak{m}_p^2$, a finite dimensional $\CC$-vector space. Similarly, the \textbf{Zariski tangent space} is $T_{X,p} := (\mathfrak{m}_p / \mathfrak{m}_p^2)^*$, the dual vector space.

(Note: A basic fact from any basic reference, for example the first chapter of Hartshorne, states that $\dim_\CC T_{X,p} \geq \dim_p X$, where $\dim_p X$ is the Krull dimension of $\mathcal{O}_{X,p}$. Also, $X$ is nonsingular at $p$ exactly when equality is achieved.) \\

Our situation is the following. We have a pointed cone $\sigma$ in $N$, a corresponding toric variety $X_\sigma$, and a distinguished point $p_\sigma \in X_\sigma$, along with other distinguished points $X_\tau$. The following questions arise:
\begin{enumerate}%[label=(\arabic*)]
\item How do we identify $T_{X_\sigma, p_\tau}$, or at least its dimension?
\item How do we study other points of $X_\sigma$?
\item How do we identify the singular locus, or set of singular points.
\end{enumerate}

\paragraph{Proposition}
\begin{Proposition}
$\dim T_{X_\sigma, p_\sigma} = \mathcal{H}$, where $\mathcal{H}$ is the Hilbert basis of $\sigma^\vee \cap M$.
\end{Proposition}
\begin{proof}
Recall that $p_\sigma(m) = \begin{cases}
0, m \neq 0 \\
1, m = 0
\end{cases}$. What is $\mathfrak{m}_{p_\sigma}$?

We know that $A_\sigma = \bigoplus_{m \in \sigma^\vee \cap M} \CC \cdot t^m$ so $\mathfrak{m}_p = \bigoplus_{m \neq 0} \CC \cdot t^m \subset A_\sigma$. We also have $\mathfrak{m}_p^2 = \bigoplus_{m \text{ not irreducible}} \CC \cdot t^m$, so that
\begin{align*}
\mathfrak{m}_p / \mathfrak{m}_p^2 = \sum_{m \in \mathcal{H}} \CC \cdot t^m \implies \dim \mathfrak{m}_p / \mathfrak{m}_p^2 = | \mathcal{H} |
\end{align*}
and the result follows.
\end{proof}

\begin{Remark}
Assume $\sigma$ is a pointed cone in $N$. What is $\dim X_\sigma$? We can get a torus $T = (\CC^*)^n \subseteq X_\sigma$ an inclusion of an open subset, where $n$ is the rank of $N$. So the field of rational functions on $X_\sigma$ satisfies $K(X_\sigma) = K((\CC^*)^n) = \CC(t_1, ..., t_n)$, and this is the dimension of $X$.
\end{Remark}
Suppose now $X_\sigma$ is smooth, that is, nonsingular, and once again that $\sigma$ is a pointed cone of maximal dimension. Then $\dim T_{X, p_\sigma} = \dim X = n$, so the Hilbert basis $\mathcal{H}$ of $\sigma^\vee \cap M$ satisfies $|\mathcal{H}| = n$. Because $X$ has maximal dimension, it has at least $n$ extremal rays. But $|\mathcal{H}| \geq \# \textit{ extremal rays } \geq n$, so that the number of extremal rays is exactly $n$.

\end{document}
Binary file added lecture-notes/pic/toricvar_feb7_1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit fea192d

Please sign in to comment.